We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

New Method to Reveal Bacterial Reaction to Antibiotics in Five Minutes Could Help Create Rapid Molecular Test

By LabMedica International staff writers
Posted on 24 May 2023
Print article
Image: New method reveals bacterial reaction to antibiotics within minutes (Photo courtesy of Freepik)
Image: New method reveals bacterial reaction to antibiotics within minutes (Photo courtesy of Freepik)

Severely sick patients suffering from bacterial infections often require immediate treatment to prevent serious health complications, making it vital for physicians to quickly identify the appropriate antibiotic. However, existing approaches to determining antibiotic resistance can involve extensive periods, sometimes hours or even days. This has led to the frequent prescription of broad-spectrum antibiotics, heightening the risk of antibiotic resistance. Now, a simple method has been developed that can detect bacterial response to antibiotics within just five minutes.

Researchers at Karolinska Institutet (Solna, Sweden) set out to reduce the unwarranted use of antibiotics by devising a rapid method to assess how bacteria react to different environmental conditions, including antibiotic administration. They developed the 5PSeq method, which relies on sequencing the messenger RNA (mRNA) that is broken down by the bacteria as they synthesize proteins. The researchers employed the 5PSeq method to examine mRNA breakdown intermediates in isolated species and complex microbiomes. They tested the method on 96 bacterial species from diverse phyla in complex clinical samples, such as fecal, gut, and vaginal samples, as well as compost samples. In a matter of minutes, the researchers were able to determine whether the bacteria were reacting to the antibiotic treatment; the effect was most noticeable after about half an hour.

By utilizing metadegradome sequencing - parallel analysis of RNA ends - the team characterized 5′P mRNA decay intermediates in all 96 species, including Bacillus subtilis, Escherichia coli, Synechocystis spp., and Prevotella copri. They discovered co-translational mRNA degradation to be common among bacteria and generated a degradome atlas for the 96 species, facilitating the further study of RNA degradation mechanisms in bacteria. In addition to measuring antibiotic resistance, the method can be employed to help scientists understand how bacteria manage diverse environmental pressures, and how they interact both with each other and with their hosts. The researchers plan to continue investigating complex intestinal samples to gain deeper insights into the interactions of bacterial communities in the gut and their effects on human health. The aim is to refine the method and develop a rapid molecular test for clinical application.

“We demonstrate that metadegradome sequencing provides fast, species-specific posttranscriptional characterization of responses to drug or environmental perturbations,” the researchers wrote. “Our work paves the way for the application of metadegradome sequencing to investigation of posttranscriptional regulation in unculturable species and complex microbial communities.”

Related Links:
Karolinska Institutet 

Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Unstirred Waterbath
HumAqua 5
New
PSA Test
Humasis PSA Card

Print article

Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.