We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

New Sensitive Blood Test Detects, Characterizes and Monitors Small Cell Lung Cancer

By LabMedica International staff writers
Posted on 02 Sep 2022
Image: Scientists have unlocked potential for a small cell lung cancer blood test (Photo courtesy of Pexels)
Image: Scientists have unlocked potential for a small cell lung cancer blood test (Photo courtesy of Pexels)

Small cell lung cancer (SCLC) is a fast-growing type of cancer that can rapidly spread to other parts of the body through a process called metastasis. Most small SCLC patients, representing 10-15% of all lung cancer cases, are diagnosed late with advanced metastatic disease and few survive beyond 1 to 2 years. However, of the minority of patients with SCLC who are diagnosed very early and have surgery, 6 out of 10 can live for 5 years or more. Now, doctors could one day diagnose and characterize early stage SCLC using a simple blood test.

Researchers at the University of Manchester (Manchester, UK) with a team at Memorial Sloan Kettering Cancer Center (MSKCC, New York, NY, USA) conducted a study focused on a new sensitive blood test to detect, characterize and monitor SCLC, the most aggressive form of lung cancer. The research team developed a new method to analyze blood samples and pick up specific DNA modifications called methylation that change early on in the growth of cancers. The team also developed a sophisticated computational method to assess which methylation modifications were present.

They focused on making their method sensitive enough to find methylation modifications in the very low levels of DNA shed from a patient’s tumor into the blood stream, known as called circulating tumor DNA (ctDNA). The test was sufficiently sensitive and accurate to detect methylation of ctDNA, even from patients whose tumors’ were diagnosed at the earliest stage. The standard treatment for SCLC is chemotherapy, but there are multiple types of SCLC that, recent studies suggest, would respond differently to a range of therapies. The new blood test could also classify which type of SCLC is affecting a patient, supporting the potential for more personalized treatment options.

“SCLC is a terrible disease, causing so much anguish to patients and their families. We think this blood test could be really useful in future clinical trials of new therapies to predict and monitor treatment responses,” said Professor Caroline Dive who led the study, which was funded by which was funded by the USA National Cancer Institute (NCI) and Cancer Research UK.

“A key advantage of blood-based molecular subtyping is that blood is much easier to collect and is able to circumvent the challenges often encountered in analyzing scant and often extensively necrotic tissue associated with tumor biopsies,” said Dr. Dominic Rothwell, who led the laboratory work. “Our study opens up the exciting possibility of detecting SCLC earlier and assigning patients to more personalized treatments.”

“To our knowledge, this is the first published study to show that DNA methylation analysis of a blood sample can identify the SCLC molecular subtypes,” added Prof Charles Rudin, Chief of Thoracic Oncology at Memorial Sloane Kettering Cancer Center who leads the global consortium that defined the different types of SCLC. “Though further validation is clearly now needed in a larger independent patient cohort, this blood test could one day assist clinicians in choosing better treatments for SCLC, which is currently notoriously difficult to manage.”

Related Links:
University of Manchester 
MSKCC 

New
Gold Member
Automatic Chemiluminescence Immunoassay Analyzer
Shine i2000
Collection and Transport System
PurSafe Plus®
Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
Laboratory Software
ArtelWare

Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The tool enables scientists to track real-time fluctuations in T cell function with unprecedented speed and precision (Photo courtesy of Shutterstock)

Luminescent Probe Measures Immune Cell Activity in Real Time

The human immune system plays a vital role in defending against disease, but its activity must be precisely monitored to ensure effective treatment in cancer therapy, autoimmune disorders, and organ transplants.... Read more

Industry

view channel
Image: The collaboration supports clinical validation and regulatory submissions of the new T1D 4-plex assay on Revvity’s GSP instrument (Photo courtesy of Revvity)

Revvity and Sanofi Collaborate on Program to Revolutionize Early Detection of Type 1 Diabetes

Type 1 diabetes (T1D) is a lifelong autoimmune condition in which the immune system destroys the pancreas’s insulin-producing beta cells, leading to dependence on insulin therapy. Early detection is critical... Read more