We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Pre-Analytical Stability of Serum Biomarkers for Neurological Disease Investigated

By LabMedica International staff writers
Posted on 01 Apr 2022
Print article
Image: Simoa HD-X Analyzer has a single molecule array platform (Photo courtesy of Quanterix)
Image: Simoa HD-X Analyzer has a single molecule array platform (Photo courtesy of Quanterix)

Blood-based biomarkers are gaining increasing attention in the clinical field of neurological diseases, as they could contribute to accurate monitoring and prediction of disease and treatment outcomes.

Neurofilament-light (NfL), glial fibrillary acidic protein (GFAP) and contactin-1 (CNTN1) are blood-based biomarkers that could contribute to monitoring and prediction of disease and treatment outcomes in neurological diseases. Pre-analytical sample handling might affect results, which could be disease-dependent.

Neurochemists at the Vrije Universiteit Amsterdam (Amsterdam, The Netherlands) tested common handling variations in serum of volunteers as well as in a defined group of patients with multiple sclerosis (pwMS). Sample sets from five pwMS and five volunteers at the outpatient clinic were collected. The team investigated the effect of the following variables: collection tube type, delayed centrifugation, centrifugation temperature, delayed storage after centrifugation and freeze-thawing.

Prior to the NfL and GFAP analyses, serum samples were rapidly thawed, vortexed and centrifuged at 10,000×g for 10 minutes at room temperature. NfL and GFAP were simultaneously analyzed by a Simoa Single Molecule Array platform using the HDx analyzer with the Neurology 2-Plex B multiplex assay (Quanterix, Billerica, MA, USA). Prior to CNTN1 analysis, in a second set of aliquots, serum samples were thawed, vortexed and centrifuged at 10,000×g for 10 minutes at room temperature. The samples were analyzed using the Human contactin-1 Magnetic Luminex Assay (R&D systems, Minneapolis, MN, USA) on a Bio-Plex 200 system (Bio-Rad Laboratories, Hercules, CA, USA).

The scientists reported that for most pre-analytical variables, serum NfL and CNTN1 levels remained unaffected. In the total group, NfL levels increased (121%) after 6 hours of delay at 2–8  °C until centrifugation, while no significant changes were observed after 24 hours delay at room temperature (RT). In pwMS specifically, CNTN1 levels increased from additional freeze-thaw cycles number 2 to 4 (111%–141%), whereas volunteer levels remained stable. GFAP showed good stability for all pre-analytical variables. Serum NfL levels were relatively higher in pwMS (median 6.9 pg/mL, compared to volunteers (4.8 pg/mL). The same was found for serum GFAP levels (pwMS: 60.5 pg/mL; volunteers: 52.1 pg/mL). Serum CNTN1 levels were relatively lower in pwMS (8,103 pg/mL) compared to volunteers (10,671 pg/mL).

The authors concluded that overall, the serum biomarkers tested were relatively unaffected by variations in sample handling. For serum NfL, they recommend storage at RT before centrifugation at 2–8  °C up to 6 hours or at RT up to 24 hours. For serum CNTN1, they advise a maximum of two freeze-thaw cycles. Their results confirm and expand on recently launched consensus standardized operating procedures. The study was published in the journal Clinical Chemistry and Laboratory Medicine.

Related Links:
Vrije Universiteit Amsterdam 
Quanterix 
R&D systems 
Bio-Rad Laboratories 

Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Immunoassays and Calibrators
QMS Tacrolimus Immunoassays
New
Centrifuge
Hematocrit Centrifuge 7511M4

Print article

Channels

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.