We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

New Technology That Automates Blood Smears to Help Labs Accurately Diagnose Bloodborne Diseases

By LabMedica International staff writers
Posted on 19 Jan 2022
Print article
Image: Autohaem smear and smear+  (Photo courtesy of Samuel McDermott)
Image: Autohaem smear and smear+ (Photo courtesy of Samuel McDermott)

A team of researchers have developed devices to automate blood smears that can consistently create high-quality smears equivalent to those created by human experts.

The device developed by researchers from Cambridge University (Cambridge, England), Bath University (Bath, UK), and the Ifakara Health Institute (Ifakara, Tanzania) removes one of the biggest bottlenecks preventing quick, reliable malaria diagnosis

One of the key steps in diagnosing or treating many bloodborne diseases is to perform a blood smear, where a drop of blood is spread across a microscope slide for analysis. It is critical the technician collecting the sample perform this smear correctly and consistently, but mistakes at this stage are easy to make and often result in useless samples. The researchers' primary focus is on diagnosis of malaria, a deadly disease that kills more than 400,000 people every year. Malaria is best diagnosed by analyzing blood smears through a microscope. While performing research for a previous study, they noticed many of these testing smears were of poor quality.

Their solution, the autohaem devices, solves this problem by automating the smearing process so every smear is correct and consistent. The devices come in two varieties, the autohaem smear and the autohaem smear+, the latter of which is fully automated with a motorized smearing mechanism. In tests, inexperienced technicians were able to use the device to produce expert-quality smears.

A key goal of the project was to make the autohaem devices accessible to as many people as possible. The researchers designed their devices to be easy to build, using readily available or 3D-printed components. Furthermore, all software and hardware are open-source and freely available. The next step for the researchers is to test out their design in real-world conditions.

"Creating blood smears is a laborious, repetitive task that requires an expert level of skill and manual dexterity," said researcher Samuel McDermott. "By using automated blood smearing machines, such as autohaem devices, technicians will be able to increase their throughput while maintaining a high enough quality for diagnosis."

Related Links:
Cambridge University 
Bath University 
Ifakara Health Institute 

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Total Thyroxine Assay
Total Thyroxine CLIA Kit
New
Cytomegalovirus Real-Time PCR Test
Quanty CMV Virus System

Print article

Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more