Same Day Test Identifies Secondary Infections in COVID-19 Patients
By LabMedica International staff writers Posted on 02 Dec 2021 |

Image: Clinical metagenomics (CMg) using nanopore sequencing (Photo courtesy of Oxford Nanopore Technologies)
The intensive care unit (ICU) is a dynamic environment with frequent staff-patient contact for invasive monitoring, interventions and personal care that together introduce the risk of secondary or nosocomial infection. When critically ill patients are cared for in the ICU, doctors may take deep samples from their lungs.
Currently samples are often sent to multiple laboratories where different bacterial and fungal cultures are set up alongside other complex molecular tests. Initial results take two to four days to return. SARS-CoV-2 has put considerable strain on ICUs, which has the potential to increase nosocomial infection, antimicrobial treatment and antimicrobial resistance (AMR).
A team of Infectious Diseases specialists led by those at Guy’s and St Thomas’ Hospital (London, UK) processed surplus clinical respiratory samples from 34 ICU COVID-19 patients with suspected secondary infections. Samples processed by the clinical laboratory included respiratory clinical samples (tracheal aspirates, bronchoalveolar lavages (BALs) and non-direct bronchoalveolar lavages (NDLs, a BAL collected without the use of a bronchoscope) for (i) routine microbiological culture for bacterial and fungal pathogens or detection of SARS-CoV-2 by PCR and (ii) sera and BALs for galactomannan (GM) antigen detection when Aspergillus infection was suspected.
Sabouraud agar plates were set up for the detection of Candida spp. and Aspergillus spp. and incubated for five days at 37 °C in aerobic conditions. Bacterial colonies were identified using MALDI-TOF (Bruker, Billerica, MA, USA) except the Aspergillus spp. where microscopy was performed. Clinical metagenomics (CMg) using nanopore sequencing (Oxford Nanopore Technologies, Oxford Science Park, UK) was evaluated in a proof-of-concept study on 43 respiratory samples from 34 intubated patients across seven intensive care units (ICUs) over a 9-week period during the first COVID-19 pandemic wave. Fragment size and quality of metagenomic libraries were analyzed using the TapeStation 4200 automated electrophoresis platform (Agilent Technologies, Santa Clara, CA, USA).
The investigators reported that an 8-hour CMg workflow was 92% sensitive and 82% specific for bacterial identification based on culture-positive and culture-negative samples, respectively. CMg sequencing reported the presence or absence of β-lactam-resistant genes carried by Enterobacterales that would modify the initial guideline-recommended antibiotics in every case. CMg was also 100% concordant with quantitative PCR for detecting Aspergillus fumigatus from four positive and 39 negative samples. Molecular typing using 24-h sequencing data identified multi-drug resistant (MDR)- Klebsiella pneumoniae ST307 outbreak involving four patients and an MDR- Corynebacterium striatum outbreak involving 14 patients across three ICUs.
Jonathan D. Edgeworth, PhD, a Consultant Microbiologist and senior author of the study, said, “As soon as the pandemic started, our scientists realized there would be a benefit to sequencing genomes of all bacteria and fungi causing infection in COVID-19 patients while in the ICU. Within a few weeks we showed it can diagnose secondary infection, target antibiotic treatment and detect outbreaks much earlier than current technologies – all from a single sample.”
The authors concluded that CMg testing provides accurate pathogen detection and antibiotic resistance prediction in a same-day laboratory workflow, with assembled genomes available the next day for genomic surveillance. The provision of this technology in a service setting could fundamentally change the multi-disciplinary team approach to managing ICU infections. The potential to improve the initial targeted treatment and rapidly detect unsuspected outbreaks of MDR-pathogens justifies further expedited clinical assessment of CMg. The study was published on November 17, 2021 in the journal Genome Medicine.
Related Links:
Guys and St Thomas’ Hospital
Bruker
Oxford Nanopore Technologies
Agilent Technologies
Currently samples are often sent to multiple laboratories where different bacterial and fungal cultures are set up alongside other complex molecular tests. Initial results take two to four days to return. SARS-CoV-2 has put considerable strain on ICUs, which has the potential to increase nosocomial infection, antimicrobial treatment and antimicrobial resistance (AMR).
A team of Infectious Diseases specialists led by those at Guy’s and St Thomas’ Hospital (London, UK) processed surplus clinical respiratory samples from 34 ICU COVID-19 patients with suspected secondary infections. Samples processed by the clinical laboratory included respiratory clinical samples (tracheal aspirates, bronchoalveolar lavages (BALs) and non-direct bronchoalveolar lavages (NDLs, a BAL collected without the use of a bronchoscope) for (i) routine microbiological culture for bacterial and fungal pathogens or detection of SARS-CoV-2 by PCR and (ii) sera and BALs for galactomannan (GM) antigen detection when Aspergillus infection was suspected.
Sabouraud agar plates were set up for the detection of Candida spp. and Aspergillus spp. and incubated for five days at 37 °C in aerobic conditions. Bacterial colonies were identified using MALDI-TOF (Bruker, Billerica, MA, USA) except the Aspergillus spp. where microscopy was performed. Clinical metagenomics (CMg) using nanopore sequencing (Oxford Nanopore Technologies, Oxford Science Park, UK) was evaluated in a proof-of-concept study on 43 respiratory samples from 34 intubated patients across seven intensive care units (ICUs) over a 9-week period during the first COVID-19 pandemic wave. Fragment size and quality of metagenomic libraries were analyzed using the TapeStation 4200 automated electrophoresis platform (Agilent Technologies, Santa Clara, CA, USA).
The investigators reported that an 8-hour CMg workflow was 92% sensitive and 82% specific for bacterial identification based on culture-positive and culture-negative samples, respectively. CMg sequencing reported the presence or absence of β-lactam-resistant genes carried by Enterobacterales that would modify the initial guideline-recommended antibiotics in every case. CMg was also 100% concordant with quantitative PCR for detecting Aspergillus fumigatus from four positive and 39 negative samples. Molecular typing using 24-h sequencing data identified multi-drug resistant (MDR)- Klebsiella pneumoniae ST307 outbreak involving four patients and an MDR- Corynebacterium striatum outbreak involving 14 patients across three ICUs.
Jonathan D. Edgeworth, PhD, a Consultant Microbiologist and senior author of the study, said, “As soon as the pandemic started, our scientists realized there would be a benefit to sequencing genomes of all bacteria and fungi causing infection in COVID-19 patients while in the ICU. Within a few weeks we showed it can diagnose secondary infection, target antibiotic treatment and detect outbreaks much earlier than current technologies – all from a single sample.”
The authors concluded that CMg testing provides accurate pathogen detection and antibiotic resistance prediction in a same-day laboratory workflow, with assembled genomes available the next day for genomic surveillance. The provision of this technology in a service setting could fundamentally change the multi-disciplinary team approach to managing ICU infections. The potential to improve the initial targeted treatment and rapidly detect unsuspected outbreaks of MDR-pathogens justifies further expedited clinical assessment of CMg. The study was published on November 17, 2021 in the journal Genome Medicine.
Related Links:
Guys and St Thomas’ Hospital
Bruker
Oxford Nanopore Technologies
Agilent Technologies
Latest Microbiology News
- Credit Card-Sized Test Boosts TB Detection in HIV Hotspots
- Fecal Metabolite Profiling Predicts Mortality in Critically Ill Patients
- Portable Molecular POC System Rules Out UTIs in Just 35 Minutes
- POC Lateral Flow Test Detects Deadly Fungal Infection Faster Than Existing Techniques
- Rapid Diagnostic Test Slashes Sepsis Mortality by 39%
- Blood Culture Assay Enhances Diagnostic Stewardship Through Targeted Panel Selection
- Real-Time Genome Sequencing Detects Dangerous Superbug Causing Hospital Infections
- Diagnostic Test Accurately Detects Colorectal Cancer by Identifying Microbial Signature in Gut Bacteria
- Rapid Bedside Test Predicts Sepsis with Over 90% Accuracy
- New Blood Test Detects Up to Five Infectious Diseases at POC
- Molecular Stool Test Shows Potential for Diagnosing TB in Adults with HIV
- New Test Diagnoses Bacterial Meningitis Quickly and Accurately
- Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
- New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
- Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
- Innovative ID/AST System to Help Diagnose Infectious Diseases and Combat AMR
Channels
Clinical Chemistry
view channel
New Reference Measurement Procedure Standardizes Nucleic Acid Amplification Test Results
Nucleic acid amplification tests (NAATs) play a key role in diagnosing a wide range of infectious diseases. These tests are generally known for their high sensitivity and specificity, and they can be developed... Read more
Pen-Like Tool Quickly and Non-Invasively Detects Opioids from Skin
Opioid drugs such as fentanyl, morphine, and oxycodone are the primary substances associated with overdose cases in the United States. Standard drug screening procedures typically involve collecting blood,... Read moreMolecular Diagnostics
view channel
New Blood Test for Leukemia Risk Detection Could Replace Bone Marrow Sampling
Myelodysplastic syndrome (MDS) is a condition typically associated with aging, where blood stem cells fail to develop into fully functional blood cells. Early and accurate diagnosis is vital, as MDS can... Read more
Blood Test Detects Preeclampsia Risk Months Before Symptoms Appear
Preeclampsia, a pregnancy-related complication characterized by elevated blood pressure and organ dysfunction, remains a major contributor to maternal and infant health issues globally. Existing screening... Read moreHematology
view channel
Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results
Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read moreImmunology
view channel
Blood Test Detects Organ Rejection in Heart Transplant Patients
Following a heart transplant, patients are required to undergo surgical biopsies so that physicians can assess the possibility of organ rejection. Rejection happens when the recipient’s immune system identifies... Read more
Liquid Biopsy Approach to Transform Diagnosis, Monitoring and Treatment of Lung Cancer
Lung cancer continues to be a major contributor to cancer-related deaths globally, with its biological complexity and diverse regulatory processes making diagnosis and treatment particularly difficult.... Read more
Computational Tool Exposes Hidden Cancer DNA Changes Influencing Treatment Resistance
Structural changes in tumor DNA are among the most damaging genetic alterations in cancer, yet they often go undetected, particularly when tissue samples are degraded or of low quality. These hidden genomic... Read morePathology
view channel
Cancer Chip Accurately Predicts Patient-Specific Chemotherapy Response
Esophageal adenocarcinoma (EAC), one of the two primary types of esophageal cancer, ranks as the sixth leading cause of cancer-related deaths worldwide and currently lacks effective targeted therapies.... Read more
Clinical AI Solution for Automatic Breast Cancer Grading Improves Diagnostic Accuracy
Labs that use traditional image analysis methods often suffer from bottlenecks and delays. By digitizing their pathology practices, labs can streamline their work, allowing them to take on larger caseloads... Read more
Saliva-Based Testing to Enable Early Detection of Cancer, Heart Disease or Parkinson’s
Saliva is one of the most accessible biological fluids, yet it remains underutilized in clinical practice. While saliva samples are used to perform genetic tests to determine, for example, paternity, the... Read moreTechnology
view channel
New POC Biosensing Technology Improves Detection of Molecular Biomarkers
Traditional diagnostic procedures in medicine typically involve sending a patient’s blood or tissue samples to clinical laboratories, where trained scientists perform testing and data interpretation.... Read more
Enhanced Lab Data Management and AI Critical to Labs of the Future, Finds Survey
Data plays a key role in the transformation of today’s digital laboratories, acting both as a key challenge and a catalyst for innovation, as revealed by a survey of over 150 scientists.... Read moreIndustry
view channel
AMP Releases Best Practice Recommendations to Guide Clinical Laboratories Offering HRD Testing
Homologous recombination deficiency (HRD) testing identifies tumors that are unable to effectively repair DNA damage through the homologous recombination repair pathway. This deficiency is often linked... Read more