Mutation Analysis Links Angioimmunoblastic T-Cell Lymphoma to Clonal Hematopoiesis
|
By LabMedica International staff writers Posted on 13 Oct 2021 |

Image: Bone marrow aspirate from a patient with peripheral T-cell lymphoma (Photo courtesy of Peter Maslak, MD)
Peripheral T-cell lymphoma (PTCL) is a heterogeneous group of lymphoid tumors and encompass peripheral T-cell lymphoma, not otherwise specified (PTCL-NOS), angioimmunoblastic T-cell lymphoma (AITL), and several other entities of T-cell lymphoma.
A genetic analysis suggests that a rare blood cancer that affects immune T cells may be caused by exposure to smoking and aging-related mutations acquired during the early stage of production of new blood cells Mutations in blood cells likely caused by smoking and aging-related changes may lead to a rare type of blood cancer that affects immune cells.
Clinical Medical Laboratorians at Weill Cornell Medicine (New York, NY, USA) used next-generation genome sequencing to analyze 537 genes in 27 patients with AITL or PTCL for genetic changes that might lead to these T-cell tumors and to secondary cancers in some patients. All tissue samples (27 lymph node [LN] tissue specimens, 27 bone marrow [BM] aspirate/peripheral blood [PB] samples) were collected from 25 AITL or two PTCL NOS patients who were diagnosed or confirmed from June 2010 to December 2019.
The tumor burden estimate was also based on more objective and sensitive immunophenotypic findings by flow cytometry). A 537-gene targeted sequencing panel, based on hybridization capture method for sequencing library construction and selection, was designed to investigate the genomic profile of the primary tumors and the BM/PB tissues. The NGS libraries were constructed using the KAPA Hyperplus Kit (Roche, Basel, Switzerland), and hybrid selection was performed with the probes from the customized Twist Library Prep Kit (Twist Biosciences, San Francisco, CA, USA). Multiplexed libraries were sequenced using 150 bp paired end HiSeq 4000 sequencers (Illumina, San Diego, CA, USA). Targeted enrichment of 45 genes recurrently mutated in myeloid malignancies was performed using the Thunderstorm system with a customized primer panel.
The scientists reported that in about 70% of the patients, there were mutations in precursor cells, most likely stem cells, in the bone marrow that can lead to the production of growing numbers of blood cells with these mutations, as well as early development of the T-cell tumors. These mutations in the precursor cells have been thought to be related to aging. In addition, the team found that the mutations associated with the progression of these tumors might be linked to smoking or exposure to second-hand smoke. They also found that patients with a higher mutation burden of one of the genes associated with the early development of these tumors were at higher risk of developing additional types of tumors.
Wayne Tam, MD, PhD, a Professor of Pathology and Laboratory Medicine and senior author of the study, said, “Our results provide new information on how exposure to smoking may cooperate with early mutations in blood precursor cells to lead to the development of certain T-cell cancers. The findings suggest a potential new way to identify patients with AITL or PTCL who are most at risk of developing secondary tumors, and may also help scientists and clinicians improve how these cancers are prevented, diagnosed and treated.”
The authors concluded that they provided genetic evidence that AITL/PTCL-NOS, clonal hematopoiesis (CH), and concomitant hematologic neoplasms (CHN) can frequently arise from common mutated hematopoietic precursor clones. The study also suggests smoking exposure as a potential risk factor for AITL/PTCL-NOS progression. The study was published on September 28, 2021 in the journal eLife.
Related Links:
Weill Cornell Medicine
Roche
Twist Biosciences
Illumina
A genetic analysis suggests that a rare blood cancer that affects immune T cells may be caused by exposure to smoking and aging-related mutations acquired during the early stage of production of new blood cells Mutations in blood cells likely caused by smoking and aging-related changes may lead to a rare type of blood cancer that affects immune cells.
Clinical Medical Laboratorians at Weill Cornell Medicine (New York, NY, USA) used next-generation genome sequencing to analyze 537 genes in 27 patients with AITL or PTCL for genetic changes that might lead to these T-cell tumors and to secondary cancers in some patients. All tissue samples (27 lymph node [LN] tissue specimens, 27 bone marrow [BM] aspirate/peripheral blood [PB] samples) were collected from 25 AITL or two PTCL NOS patients who were diagnosed or confirmed from June 2010 to December 2019.
The tumor burden estimate was also based on more objective and sensitive immunophenotypic findings by flow cytometry). A 537-gene targeted sequencing panel, based on hybridization capture method for sequencing library construction and selection, was designed to investigate the genomic profile of the primary tumors and the BM/PB tissues. The NGS libraries were constructed using the KAPA Hyperplus Kit (Roche, Basel, Switzerland), and hybrid selection was performed with the probes from the customized Twist Library Prep Kit (Twist Biosciences, San Francisco, CA, USA). Multiplexed libraries were sequenced using 150 bp paired end HiSeq 4000 sequencers (Illumina, San Diego, CA, USA). Targeted enrichment of 45 genes recurrently mutated in myeloid malignancies was performed using the Thunderstorm system with a customized primer panel.
The scientists reported that in about 70% of the patients, there were mutations in precursor cells, most likely stem cells, in the bone marrow that can lead to the production of growing numbers of blood cells with these mutations, as well as early development of the T-cell tumors. These mutations in the precursor cells have been thought to be related to aging. In addition, the team found that the mutations associated with the progression of these tumors might be linked to smoking or exposure to second-hand smoke. They also found that patients with a higher mutation burden of one of the genes associated with the early development of these tumors were at higher risk of developing additional types of tumors.
Wayne Tam, MD, PhD, a Professor of Pathology and Laboratory Medicine and senior author of the study, said, “Our results provide new information on how exposure to smoking may cooperate with early mutations in blood precursor cells to lead to the development of certain T-cell cancers. The findings suggest a potential new way to identify patients with AITL or PTCL who are most at risk of developing secondary tumors, and may also help scientists and clinicians improve how these cancers are prevented, diagnosed and treated.”
The authors concluded that they provided genetic evidence that AITL/PTCL-NOS, clonal hematopoiesis (CH), and concomitant hematologic neoplasms (CHN) can frequently arise from common mutated hematopoietic precursor clones. The study also suggests smoking exposure as a potential risk factor for AITL/PTCL-NOS progression. The study was published on September 28, 2021 in the journal eLife.
Related Links:
Weill Cornell Medicine
Roche
Twist Biosciences
Illumina
Latest Molecular Diagnostics News
- Sepsis Test Demonstrates Strong Performance in Post-Cardiac Surgery Patients
- Next-Gen Automated ELISA System Elevates Laboratory Performance
- Blood Test Combined with MRI Brain Scans Reveals Two Distinct Multiple Sclerosis Types
- At-Home Blood Tests Accurately Detect Key Alzheimer's Biomarkers
- Ultra-Sensitive Blood Biomarkers Enable Population-Scale Insights into Alzheimer’s Pathology
- Blood Test Could Predict Death Risk in World’s Most Common Inherited Heart Disease
- Rapid POC Hepatitis C Test Provides Results Within One Hour
- New Biomarkers Predict Disease Severity in Children with RSV Bronchiolitis
- CTC Measurement Blood Test Guides Treatment Decisions in Metastatic Breast Cancer Subtype
- Multiplex Antibody Assay Could Transform Hepatitis B Immunity Testing
- Genetic Testing Improves Comprehensive Risk-Based Screening for Breast Cancer
- Urine Test Could Reveal Real Age and Life Span
- Genomic Test Identifies African Americans at Risk for Early Prostate Cancer Recurrence
- Blood Test Could Identify Biomarker Signature of Cerebral Malaria
- World’s First Biomarker Blood Test to Assess MS Progression
- Neuron-Derived Extracellular Vesicles Could Improve Alzheimer’s Diagnosis
Channels
Clinical Chemistry
view channel
Blood Test Could Predict and Identify Early Relapses in Myeloma Patients
Multiple myeloma is an incurable cancer of the bone marrow, and while many patients now live for more than a decade after diagnosis, a significant proportion relapse much earlier with poor outcomes.... Read more
Compact Raman Imaging System Detects Subtle Tumor Signals
Accurate cancer diagnosis often depends on labor-intensive tissue staining and expert pathological review, which can delay results and limit access to rapid screening. These conventional methods also make... Read moreMolecular Diagnostics
view channel
Sepsis Test Demonstrates Strong Performance in Post-Cardiac Surgery Patients
Sepsis is difficult to diagnose accurately in patients recovering from major surgery, as infection-related symptoms often overlap with non-infectious systemic inflammatory responses. This challenge is... Read more
Next-Gen Automated ELISA System Elevates Laboratory Performance
A next-generation automated ELISA system is designed to elevate laboratory performance through advanced workflow automation, enhanced connectivity, and a modernized user experience. DYNEX Technologies... Read more
At-Home Blood Tests Accurately Detect Key Alzheimer's Biomarkers
Diagnosing Alzheimer’s disease typically relies on brain scans or spinal fluid tests, which are invasive, costly, and difficult to access outside specialist clinics. These barriers have limited large-scale... Read more
Blood Test Combined with MRI Brain Scans Reveals Two Distinct Multiple Sclerosis Types
Multiple sclerosis (MS) affects more than 2.8 million people worldwide, yet predicting how the disease will progress in individual patients remains difficult. Current MS classifications are based on clinical... Read moreImmunology
view channel
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read more
Blood Test Could Identify Colon Cancer Patients to Benefit from NSAIDs
Colon cancer remains a major cause of cancer-related illness, with many patients facing relapse even after surgery and chemotherapy. Up to 40% of people with stage III disease experience recurrence, highlighting... Read moreMicrobiology
view channel
New UTI Diagnosis Method Delivers Antibiotic Resistance Results 24 Hours Earlier
Urinary tract infections affect around 152 million people every year, making them one of the most common bacterial infections worldwide. In routine medical practice, diagnosis often relies on rapid urine... Read more
Breakthroughs in Microbial Analysis to Enhance Disease Prediction
Microorganisms shape human health, ecosystems, and the planet’s climate, yet identifying them and understanding how they are related remains a major scientific challenge. Even with modern DNA sequencing,... Read morePathology
view channel
ADLM Updates Expert Guidance on Urine Drug Testing for Patients in Emergency Departments
Urine drug testing plays a critical role in the emergency department, particularly for patients presenting with suspected overdose or altered mental status. Accurate and timely results can directly influence... Read more
New Age-Based Blood Test Thresholds to Catch Ovarian Cancer Earlier
Ovarian cancer affects around one in 50 women during their lifetime, with roughly 7,000 diagnoses each year in the UK. The disease is often detected late because symptoms such as bloating, abdominal pain,... Read moreTechnology
view channel
Pioneering Blood Test Detects Lung Cancer Using Infrared Imaging
Detecting cancer early and tracking how it responds to treatment remains a major challenge, particularly when cancer cells are present in extremely low numbers in the bloodstream. Circulating tumor cells... Read more
AI Predicts Colorectal Cancer Survival Using Clinical and Molecular Features
Colorectal cancer is one of the most common and deadly cancers worldwide, and accurately predicting patient survival remains a major clinical challenge. Traditional prognostic tools often rely on either... Read moreIndustry
view channel
BD and Penn Institute Collaborate to Advance Immunotherapy through Flow Cytometry
BD (Becton, Dickinson and Company, Franklin Lakes, NJ, USA) has entered into a strategic collaboration with the Institute for Immunology and Immune Health (I3H, Philadelphia, PA, USA) at the University... Read more







 assay.jpg)