Fluorescent Lymphocytes and Smudge Cells Explored in Infectious Mononucleosis
By LabMedica International staff writers Posted on 30 Aug 2021 |

Image: The Sysmex DI-60 is an automated, cell-locating image analysis system. It is connected directly to the analyzer track and therefore eliminates the need for manual intervention in the hematology workflow in the imaging cycle (Photo courtesy of Sysmex Corporation)
Infectious mononucleosis (also known as Glandular fever) is an infection most commonly caused by the Epstein-Barr virus (EBV), which is a human herpes virus. Glandular fever is not particularly contagious. It is spread mainly through contact with saliva, such as through kissing, or sharing food and drink utensils.
The mono test is 71% to 90% accurate and may be used as an initial test for diagnosing infectious mononucleosis (IM). However, the test does have a 25% false-negative rate due to the fact that some people infected with EBV do not produce the heterophile antibodies that the mono test is designed to detect. Atypical lymphocytes appear, but the heterophilic agglutination test is negative.
Clinical Laboratorians at the Peking University Third Hospital (Beijing, China) enrolled in a study 62 IM patients, 67 healthy controls, 84 patients with upper respiratory tract virus infection, and 35 patients with malignant lymphoid diseases, to explore the diagnostic value of high fluorescent lymphocytes (HFLC) and smudge cells for infectious mononucleosis (IM). The complete blood counts and leukocyte differential counts were tested, and the smudge cells were manually counted.
Complete blood counts including red blood cells (RBC), hemoglobin (HGB), white blood cells (WBC), and leukocyte differential count, platelet (PLT), and HFLC percentage (HFLC%) were investigated with the Sysmex XN 9000 (Sysmex Corporation, Kobe, Japan). Manual leukocyte classification and smudge cells were counted by Sysmex DI-60. A total of 200 nucleated cells were read on each slide. The number of smudge cells seen per 100 nucleated cells was counted, and the blood smears were observed by two experienced technicians under an optical microscope.
The investigators reported that the value of HFLC% and smudge cells of the IM group were significantly higher than those of healthy controls and disease controls, and the HFLC% value of IM patients was positively correlated with the number of reactive lymphocytes. When the cutoff value of HFLC% was 0.4%, and of IM was high (AUC = 0.995). When the smudge cells >2/100 nucleated cells, the diagnostic value was further enhanced (AUC = 1.000). When the cutoff value of the HFLC% was 1.2%, it effectively distinguished IM patients from upper respiratory tract virus infection patients (AUC = 0.934). When smudge cells >16/100 nucleated cells, it also has high differential diagnosis value (AUC = 0.913). The combination HFLC% and smudge cells for the differential diagnosis can be increased to 0.968.
The authors concluded that HFLC% and smudge cells can be used as effective indicators in the early diagnosis and differential diagnosis of IM. HFLC% assists the diagnosis of IM with the following advantages: first, this indicator has high specificity and sensitivity for the diagnosis of IM, which can effectively avoid missed diagnosed; second, HFLC%, as one of the blood routine indicators, can be obtained directly from the automatic blood analyzer. The study was published on August 17, 2021 in the Journal of Clinical Laboratory Analysis.
Related Links:
Peking University Third Hospital
Sysmex Corporation
The mono test is 71% to 90% accurate and may be used as an initial test for diagnosing infectious mononucleosis (IM). However, the test does have a 25% false-negative rate due to the fact that some people infected with EBV do not produce the heterophile antibodies that the mono test is designed to detect. Atypical lymphocytes appear, but the heterophilic agglutination test is negative.
Clinical Laboratorians at the Peking University Third Hospital (Beijing, China) enrolled in a study 62 IM patients, 67 healthy controls, 84 patients with upper respiratory tract virus infection, and 35 patients with malignant lymphoid diseases, to explore the diagnostic value of high fluorescent lymphocytes (HFLC) and smudge cells for infectious mononucleosis (IM). The complete blood counts and leukocyte differential counts were tested, and the smudge cells were manually counted.
Complete blood counts including red blood cells (RBC), hemoglobin (HGB), white blood cells (WBC), and leukocyte differential count, platelet (PLT), and HFLC percentage (HFLC%) were investigated with the Sysmex XN 9000 (Sysmex Corporation, Kobe, Japan). Manual leukocyte classification and smudge cells were counted by Sysmex DI-60. A total of 200 nucleated cells were read on each slide. The number of smudge cells seen per 100 nucleated cells was counted, and the blood smears were observed by two experienced technicians under an optical microscope.
The investigators reported that the value of HFLC% and smudge cells of the IM group were significantly higher than those of healthy controls and disease controls, and the HFLC% value of IM patients was positively correlated with the number of reactive lymphocytes. When the cutoff value of HFLC% was 0.4%, and of IM was high (AUC = 0.995). When the smudge cells >2/100 nucleated cells, the diagnostic value was further enhanced (AUC = 1.000). When the cutoff value of the HFLC% was 1.2%, it effectively distinguished IM patients from upper respiratory tract virus infection patients (AUC = 0.934). When smudge cells >16/100 nucleated cells, it also has high differential diagnosis value (AUC = 0.913). The combination HFLC% and smudge cells for the differential diagnosis can be increased to 0.968.
The authors concluded that HFLC% and smudge cells can be used as effective indicators in the early diagnosis and differential diagnosis of IM. HFLC% assists the diagnosis of IM with the following advantages: first, this indicator has high specificity and sensitivity for the diagnosis of IM, which can effectively avoid missed diagnosed; second, HFLC%, as one of the blood routine indicators, can be obtained directly from the automatic blood analyzer. The study was published on August 17, 2021 in the Journal of Clinical Laboratory Analysis.
Related Links:
Peking University Third Hospital
Sysmex Corporation
Latest Microbiology News
- Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
- New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
- Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
- Innovative ID/AST System to Help Diagnose Infectious Diseases and Combat AMR
- Gastrointestinal Panel Delivers Rapid Detection of Five Common Bacterial Pathogens for Outpatient Use
- Rapid PCR Testing in ICU Improves Antibiotic Stewardship
- Unique Genetic Signature Predicts Drug Resistance in Bacteria
- Unique Barcoding System Tracks Pneumonia-Causing Bacteria as They Infect Blood Stream
- Rapid Sepsis Diagnostic Test Demonstrates Improved Patient Care and Cost Savings in Hospital Application
- Rapid Diagnostic System to Detect Neonatal Sepsis Within Hours
- Novel Test to Diagnose Bacterial Pneumonia Directly from Whole Blood
- Interferon-γ Release Assay Effective in Patients with COPD Complicated with Pulmonary Tuberculosis
- New Point of Care Tests to Help Reduce Overuse of Antibiotics
- 30-Minute Sepsis Test Differentiates Bacterial Infections, Viral Infections, and Noninfectious Disease
- CRISPR-TB Blood Test to Enable Early Disease Diagnosis and Public Screening
- Syndromic Panel Provides Fast Answers for Outpatient Diagnosis of Gastrointestinal Conditions
Channels
Clinical Chemistry
view channel
‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreMolecular Diagnostics
view channel
Simple Blood Test Improves Heart Attack and Stroke Risk Prediction
Troponin is a protein found in heart muscle cells that is released into the bloodstream when the heart is damaged. High-sensitivity troponin blood tests are commonly used in hospitals to diagnose heart... Read more
Blood Biomarker Test Could Detect Genetic Predisposition to Alzheimer’s
New medications for Alzheimer’s disease, the most common form of dementia, are now becoming available. These treatments, known as “amyloid antibodies,” work by promoting the removal of small deposits from... Read more
Novel Autoantibody Against DAGLA Discovered in Cerebellitis
Autoimmune cerebellar ataxias are strongly disabling disorders characterized by an impaired ability to coordinate muscle movement. Cerebellar autoantibodies serve as useful biomarkers to support rapid... Read more
Gene-Based Blood Test Accurately Predicts Tumor Recurrence of Advanced Skin Cancer
Melanoma, an aggressive form of skin cancer, becomes extremely difficult to treat once it spreads to other parts of the body. For patients with metastatic melanoma tumors that cannot be surgically removed... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Spit Test More Accurate at Identifying Future Prostate Cancer Risk
Currently, blood tests that measure the level of a protein called prostate-specific antigen (PSA) are commonly used to identify men at higher risk for prostate cancer. This test is typically used based... Read more
DNA Nanotechnology Boosts Sensitivity of Test Strips
Since the Covid-19 pandemic, most people have become familiar with paper-based rapid test strips, also known as lateral flow immunoassays (LFIAs). These tests are used to quickly detect biomarkers that... Read more
Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read moreTechnology
view channel
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more