Plasma-Based Algorithm Accurately Predicts Likelihood of Developing Alzheimer’s Disease
|
By LabMedica International staff writers Posted on 31 May 2021 |

Image: Neurons were grown in tissue culture and stained with antibody to microtubule associated protein 2 (MAP2) protein in green and MAP tau in red. MAP2 is found only in dendrites and perikarya, while tau is found in these sites and in axons as well. DNA is shown in blue (Photo courtesy of EnCor Biotechnology Inc. via Wikimedia Commons)
A team of Swedish researchers has created an algorithm for use by physicians lacking access to advanced diagnostic instruments, which accurately predicts future risk of developing Alzheimer’s disease (AD).
Early and accurate diagnosis of AD is necessary to take advantage of a new generation of drugs designed to slow down the progression of the disease.
In this regard, investigators at Lund University (Sweden) hypothesized that the combination of plasma phosphorylated tau protein (P-tau) and other accessible biomarkers might provide accurate prediction about the risk of developing AD. They tested this theory by analyzing blood samples from 340 participants with subjective cognitive decline and mild cognitive impairment from the Swedish BioFINDER study and 543 participants from the North American Alzheimer’s Disease Neuroimaging Initiative (ADNI). Plasma P-tau, plasma Abeta42/Abeta40, plasma neurofilament light, APOE genotype, brief cognitive tests, and an AD-specific magnetic resonance imaging measure were examined using progression to AD as outcome.
Results revealed that within four years of the analysis, plasma P-tau217 predicted AD accurately (area under the curve (AUC) = 0.83) in the BioFINDER group. Combining plasma P-tau217, memory, executive function and APOE produced higher accuracy (AUC = 0.91). In the ADNI group, this model had similar AUC (0.90) using plasma P-tau181 instead of P-tau217.
The diagnostic model was used to predict the probability of an individual progressing to AD. Within two and six years, similar models had AUCs of 0.90–0.91 in both cohorts. Significantly, measuring cerebrospinal fluid P-tau, Abeta42/Abeta40, and neurofilament light instead of plasma biomarkers did not significantly improve the accuracy. Furthermore, this simple prognostic algorithm was significantly more accurate than clinical predictions by dementia experts who examined the patients, but did not have access to data generated by the algorithm.
“A combination of a simple blood test (measuring a variant of the tau protein and a risk gene for Alzheimer's) and three brief cognitive tests that only take 10 minutes to complete, predicted with over 90% certainty which patients would develop Alzheimer's dementia within four years. This simple prognostic algorithm was significantly more accurate than the clinical predictions by the dementia experts who examined the patients, but did not have access to expensive spinal fluid testing or PET scans,” said senior author Dr. Oskar Hansson, professor of neurology at Lund University. “The algorithm will enable us to recruit people with Alzheimer's at an early stage, which is when new drugs have a better chance of slowing the course of the disease.”
The Alzheimer’s disease diagnostic algorithm was described in the May 24, 2021, online edition of the journal Nature Medicine.
Related Links:
Lund University
Early and accurate diagnosis of AD is necessary to take advantage of a new generation of drugs designed to slow down the progression of the disease.
In this regard, investigators at Lund University (Sweden) hypothesized that the combination of plasma phosphorylated tau protein (P-tau) and other accessible biomarkers might provide accurate prediction about the risk of developing AD. They tested this theory by analyzing blood samples from 340 participants with subjective cognitive decline and mild cognitive impairment from the Swedish BioFINDER study and 543 participants from the North American Alzheimer’s Disease Neuroimaging Initiative (ADNI). Plasma P-tau, plasma Abeta42/Abeta40, plasma neurofilament light, APOE genotype, brief cognitive tests, and an AD-specific magnetic resonance imaging measure were examined using progression to AD as outcome.
Results revealed that within four years of the analysis, plasma P-tau217 predicted AD accurately (area under the curve (AUC) = 0.83) in the BioFINDER group. Combining plasma P-tau217, memory, executive function and APOE produced higher accuracy (AUC = 0.91). In the ADNI group, this model had similar AUC (0.90) using plasma P-tau181 instead of P-tau217.
The diagnostic model was used to predict the probability of an individual progressing to AD. Within two and six years, similar models had AUCs of 0.90–0.91 in both cohorts. Significantly, measuring cerebrospinal fluid P-tau, Abeta42/Abeta40, and neurofilament light instead of plasma biomarkers did not significantly improve the accuracy. Furthermore, this simple prognostic algorithm was significantly more accurate than clinical predictions by dementia experts who examined the patients, but did not have access to data generated by the algorithm.
“A combination of a simple blood test (measuring a variant of the tau protein and a risk gene for Alzheimer's) and three brief cognitive tests that only take 10 minutes to complete, predicted with over 90% certainty which patients would develop Alzheimer's dementia within four years. This simple prognostic algorithm was significantly more accurate than the clinical predictions by the dementia experts who examined the patients, but did not have access to expensive spinal fluid testing or PET scans,” said senior author Dr. Oskar Hansson, professor of neurology at Lund University. “The algorithm will enable us to recruit people with Alzheimer's at an early stage, which is when new drugs have a better chance of slowing the course of the disease.”
The Alzheimer’s disease diagnostic algorithm was described in the May 24, 2021, online edition of the journal Nature Medicine.
Related Links:
Lund University
Latest Molecular Diagnostics News
- Blood Test Could Identify Biomarker Signature of Cerebral Malaria
- World’s First Biomarker Blood Test to Assess MS Progression
- Neuron-Derived Extracellular Vesicles Could Improve Alzheimer’s Diagnosis
- Sample Prep Instrument to Empower Decentralized PCR Testing for Tuberculosis
- Endometriosis Blood Test Could Replace Invasive Laparoscopic Diagnosis
- World's First NGS-Based Diagnostic Platform Fully Automates Sample-To-Result Process Within Single Device
- Rapid Diagnostic Breakthrough Simultaneously Detects Resistance and Virulence in Klebsiella Pneumoniae
- DNA Detection Platform Enables Real-Time Molecular Detection
- STI Molecular Test Delivers Rapid POC Results for Treatment Guidance
- Blood Biomarker Improves Early Brain Injury Prognosis After Cardiac Arrest
- Biomarkers Could Identify Patients at High Risk of Severe AKI After Major Surgery
- CLIA Test Identifies Head and Neck Cancer Recurrence from Post-Surgical Lymphatic Fluid
- New 15-Minute Hepatitis C Test Paves Way for Same-Day Treatment
- Ovarian Cancer Assay Outperforms Traditional Tests in Early Detection
- Ultrasensitive Method Detects Low-Frequency Cancer Mutations
- Blood Test Enables Non-Invasive Endometriosis Detection
Channels
Clinical Chemistry
view channel
Compact Raman Imaging System Detects Subtle Tumor Signals
Accurate cancer diagnosis often depends on labor-intensive tissue staining and expert pathological review, which can delay results and limit access to rapid screening. These conventional methods also make... Read more
Noninvasive Blood-Glucose Monitoring to Replace Finger Pricks for Diabetics
People with diabetes often need to measure their blood glucose multiple times a day, most commonly through finger-prick blood tests or implanted sensors. These methods can be painful, inconvenient, and... Read moreHematology
view channel
MRD Tests Could Predict Survival in Leukemia Patients
Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read more
Blood Test Could Identify Colon Cancer Patients to Benefit from NSAIDs
Colon cancer remains a major cause of cancer-related illness, with many patients facing relapse even after surgery and chemotherapy. Up to 40% of people with stage III disease experience recurrence, highlighting... Read moreMicrobiology
view channel
New UTI Diagnosis Method Delivers Antibiotic Resistance Results 24 Hours Earlier
Urinary tract infections affect around 152 million people every year, making them one of the most common bacterial infections worldwide. In routine medical practice, diagnosis often relies on rapid urine... Read more
Breakthroughs in Microbial Analysis to Enhance Disease Prediction
Microorganisms shape human health, ecosystems, and the planet’s climate, yet identifying them and understanding how they are related remains a major scientific challenge. Even with modern DNA sequencing,... Read morePathology
view channel
Genetics and AI Improve Diagnosis of Aortic Stenosis
Aortic stenosis is a progressive narrowing of the aortic valve that restricts blood flow from the heart and can be fatal if left untreated. There are currently no medical therapies that can prevent or... Read more
AI Tool Simultaneously Identifies Genetic Mutations and Disease Type
Interpreting genetic test results remains a major challenge in modern medicine, particularly for rare and complex diseases. While existing tools can indicate whether a genetic mutation is harmful, they... Read more
Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups
Medicinal syrups contaminated with toxic chemicals have caused the deaths of hundreds of children worldwide, exposing a critical gap in how these products are tested before reaching patients.... Read more
Tumor Signals in Saliva and Blood Enable Non-Invasive Monitoring of Head and Neck Cancer
Head and neck cancers are among the most aggressive malignancies worldwide, with nearly 900,000 new cases diagnosed each year. Monitoring these cancers for recurrence or relapse typically relies on tissue... Read moreTechnology
view channel
AI Predicts Colorectal Cancer Survival Using Clinical and Molecular Features
Colorectal cancer is one of the most common and deadly cancers worldwide, and accurately predicting patient survival remains a major clinical challenge. Traditional prognostic tools often rely on either... Read more
Diagnostic Chip Monitors Chemotherapy Effectiveness for Brain Cancer
Glioblastoma is one of the most aggressive and fatal brain cancers, with most patients surviving less than two years after diagnosis. Treatment is particularly challenging because the tumor infiltrates... Read moreIndustry
view channel
BD and Penn Institute Collaborate to Advance Immunotherapy through Flow Cytometry
BD (Becton, Dickinson and Company, Franklin Lakes, NJ, USA) has entered into a strategic collaboration with the Institute for Immunology and Immune Health (I3H, Philadelphia, PA, USA) at the University... Read more







 Analyzer.jpg)