Plasma-Based Algorithm Accurately Predicts Likelihood of Developing Alzheimer’s Disease
By LabMedica International staff writers Posted on 31 May 2021 |

Image: Neurons were grown in tissue culture and stained with antibody to microtubule associated protein 2 (MAP2) protein in green and MAP tau in red. MAP2 is found only in dendrites and perikarya, while tau is found in these sites and in axons as well. DNA is shown in blue (Photo courtesy of EnCor Biotechnology Inc. via Wikimedia Commons)
A team of Swedish researchers has created an algorithm for use by physicians lacking access to advanced diagnostic instruments, which accurately predicts future risk of developing Alzheimer’s disease (AD).
Early and accurate diagnosis of AD is necessary to take advantage of a new generation of drugs designed to slow down the progression of the disease.
In this regard, investigators at Lund University (Sweden) hypothesized that the combination of plasma phosphorylated tau protein (P-tau) and other accessible biomarkers might provide accurate prediction about the risk of developing AD. They tested this theory by analyzing blood samples from 340 participants with subjective cognitive decline and mild cognitive impairment from the Swedish BioFINDER study and 543 participants from the North American Alzheimer’s Disease Neuroimaging Initiative (ADNI). Plasma P-tau, plasma Abeta42/Abeta40, plasma neurofilament light, APOE genotype, brief cognitive tests, and an AD-specific magnetic resonance imaging measure were examined using progression to AD as outcome.
Results revealed that within four years of the analysis, plasma P-tau217 predicted AD accurately (area under the curve (AUC) = 0.83) in the BioFINDER group. Combining plasma P-tau217, memory, executive function and APOE produced higher accuracy (AUC = 0.91). In the ADNI group, this model had similar AUC (0.90) using plasma P-tau181 instead of P-tau217.
The diagnostic model was used to predict the probability of an individual progressing to AD. Within two and six years, similar models had AUCs of 0.90–0.91 in both cohorts. Significantly, measuring cerebrospinal fluid P-tau, Abeta42/Abeta40, and neurofilament light instead of plasma biomarkers did not significantly improve the accuracy. Furthermore, this simple prognostic algorithm was significantly more accurate than clinical predictions by dementia experts who examined the patients, but did not have access to data generated by the algorithm.
“A combination of a simple blood test (measuring a variant of the tau protein and a risk gene for Alzheimer's) and three brief cognitive tests that only take 10 minutes to complete, predicted with over 90% certainty which patients would develop Alzheimer's dementia within four years. This simple prognostic algorithm was significantly more accurate than the clinical predictions by the dementia experts who examined the patients, but did not have access to expensive spinal fluid testing or PET scans,” said senior author Dr. Oskar Hansson, professor of neurology at Lund University. “The algorithm will enable us to recruit people with Alzheimer's at an early stage, which is when new drugs have a better chance of slowing the course of the disease.”
The Alzheimer’s disease diagnostic algorithm was described in the May 24, 2021, online edition of the journal Nature Medicine.
Related Links:
Lund University
Early and accurate diagnosis of AD is necessary to take advantage of a new generation of drugs designed to slow down the progression of the disease.
In this regard, investigators at Lund University (Sweden) hypothesized that the combination of plasma phosphorylated tau protein (P-tau) and other accessible biomarkers might provide accurate prediction about the risk of developing AD. They tested this theory by analyzing blood samples from 340 participants with subjective cognitive decline and mild cognitive impairment from the Swedish BioFINDER study and 543 participants from the North American Alzheimer’s Disease Neuroimaging Initiative (ADNI). Plasma P-tau, plasma Abeta42/Abeta40, plasma neurofilament light, APOE genotype, brief cognitive tests, and an AD-specific magnetic resonance imaging measure were examined using progression to AD as outcome.
Results revealed that within four years of the analysis, plasma P-tau217 predicted AD accurately (area under the curve (AUC) = 0.83) in the BioFINDER group. Combining plasma P-tau217, memory, executive function and APOE produced higher accuracy (AUC = 0.91). In the ADNI group, this model had similar AUC (0.90) using plasma P-tau181 instead of P-tau217.
The diagnostic model was used to predict the probability of an individual progressing to AD. Within two and six years, similar models had AUCs of 0.90–0.91 in both cohorts. Significantly, measuring cerebrospinal fluid P-tau, Abeta42/Abeta40, and neurofilament light instead of plasma biomarkers did not significantly improve the accuracy. Furthermore, this simple prognostic algorithm was significantly more accurate than clinical predictions by dementia experts who examined the patients, but did not have access to data generated by the algorithm.
“A combination of a simple blood test (measuring a variant of the tau protein and a risk gene for Alzheimer's) and three brief cognitive tests that only take 10 minutes to complete, predicted with over 90% certainty which patients would develop Alzheimer's dementia within four years. This simple prognostic algorithm was significantly more accurate than the clinical predictions by the dementia experts who examined the patients, but did not have access to expensive spinal fluid testing or PET scans,” said senior author Dr. Oskar Hansson, professor of neurology at Lund University. “The algorithm will enable us to recruit people with Alzheimer's at an early stage, which is when new drugs have a better chance of slowing the course of the disease.”
The Alzheimer’s disease diagnostic algorithm was described in the May 24, 2021, online edition of the journal Nature Medicine.
Related Links:
Lund University
Latest Molecular Diagnostics News
- New DNA Methylation-Based Method Predicts Cancer Progression
- Urine Test Could Predict Outcome of Cartilage Transplant Surgery
- 2-Hour Cancer Blood Test to Transform Tumor Detection
- Ultrasensitive Test Could Identify Earliest Molecular Signs of Metastatic Relapse in Breast Cancer Patients
- Automated High Throughput Immunoassay Test to Advance Neurodegenerative Clinical Research
- Blood Test Could Detect Proteins Linked to Alzheimer's Disease and Memory Loss
- Brain Inflammation Biomarker Detects Alzheimer’s Years Before Symptoms Appear
- First-of-Its-Kind Blood Test Detects Over 50 Cancer Types
- Routine Blood Draws Could Detect Epigenetic Biomarkers for Predicting Cardiovascular Disease Risk
- Single Cell RNA Sequencing Could Enable Non-Invasive Blood Disorder Diagnosis
- Blood Test Identifies HPV-Associated Head and Neck Cancers 10 Years Before Symptoms
- Giant DNA Elements Discovered in Mouth Could Impact Oral Health
- Simple Blood Test Spots Disease Through Metabolic Distortion
- Simple Blood Test Could Streamline Early Alzheimer's Detection
- Unique Microbial Fingerprint to Improve Diagnosis of Colorectal Cancer
- ELISA-Based Test Uses Gynecologic Fluids to Detect Endometrial Cancer
Channels
Clinical Chemistry
view channel
Gold Nanoparticles to Improve Accuracy of Ovarian Cancer Diagnosis
Ovarian cancer is considered one of the deadliest cancers, in part because it rarely shows clear symptoms in its early stages, and diagnosis is often complex. Current approaches make it difficult to accurately... Read more
Simultaneous Cell Isolation Technology Improves Cancer Diagnostic Accuracy
Accurate cancer diagnosis remains a challenge, as liquid biopsy techniques often fail to capture the complexity of tumor biology. Traditional systems for isolating circulating tumor cells (CTCs) vary in... Read moreHematology
view channel
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more
Platelets Could Improve Early and Minimally Invasive Detection of Cancer
Platelets are widely recognized for their role in blood clotting and scab formation, but they also play a crucial role in immune defense by detecting pathogens and recruiting immune cells.... Read more
Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment
Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read moreImmunology
view channel
Novel Tool Uses Deep Learning for Precision Cancer Therapy
Nearly 50 new cancer therapies are approved each year, but selecting the right one for patients with highly individual tumor characteristics remains a major challenge. Physicians struggle to navigate the... Read more
Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients
Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read moreMicrobiology
view channel
Microfluidic Platform Assesses Neutrophil Function in Sepsis Patients
Sepsis arises from infection and immune dysregulation, with neutrophils playing a central role in its progression. However, current clinical tools are unable to both isolate these cells and assess their... Read more
New Diagnostic Method Confirms Sepsis Infections Earlier
Sepsis remains one of the most dangerous medical emergencies, often progressing rapidly and becoming fatal without timely intervention. Each hour of delayed treatment in septic shock reduces patient survival... Read more
New Markers Could Predict Risk of Severe Chlamydia Infection
Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more
Portable Spectroscopy Rapidly and Noninvasively Detects Bacterial Species in Vaginal Fluid
Vaginal health depends on maintaining a balanced microbiome, particularly certain Lactobacillus species. Disruption of this balance, known as dysbiosis, can increase risks of infection, pregnancy complications,... Read morePathology
view channel
ESR Testing Breakthrough Extends Blood Sample Stability from 4 to 28 Hours
Erythrocyte sedimentation rate (ESR) is one of the most widely ordered blood tests worldwide, helping clinicians detect and monitor infections, autoimmune conditions, cancers, and other diseases.... Read more
Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma
Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more
Clinicopathologic Study Supports Exclusion of Cervical Serous Carcinoma from WHO Classification
High-grade serous carcinoma is a rare diagnosis in cervical biopsies and can be difficult to distinguish from other tumor types. Cervical serous carcinoma is no longer recognized as a primary cervical... Read moreTechnology
view channel
Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine
The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Rapid Diagnostic Technology Utilizes Breath Samples to Detect Lower Respiratory Tract Infections
Respiratory tract infections (LRTIs) are leading causes of illness and death worldwide, particularly among vulnerable populations such as the elderly, young children, and those with compromised immune systems.... Read moreIndustry
view channel
VedaBio Partners With Mammoth Biosciences to Expand CRISPR-Based Diagnostic Technologies
VedaBio (San Diego, CA, USA) has entered into a non-exclusive license agreement with Mammoth Biosciences (Brisbane, CA, USA) for the use of select CRISPR-based technologies in diagnostic applications.... Read more