LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Toxoplasmic Encephalitis in HIV Patients Detected in Urine

By LabMedica International staff writers
Posted on 25 Mar 2021
Print article
Image: The EASY-nLC 1200 HPLC, high-throughput capacity in a nano-flow UHPLC (Photo courtesy of Thermo Fisher Scientific)
Image: The EASY-nLC 1200 HPLC, high-throughput capacity in a nano-flow UHPLC (Photo courtesy of Thermo Fisher Scientific)
Toxoplasma encephalitis (TE) is the most commonly reported neurological opportunistic infection in human immunodeficiency virus (HIV)-infected patients since the introduction of combination ART (cART). Diagnosis of TE is challenging under the best clinical circumstances.

The poor clinical sensitivity of quantitative polymerase chain reaction (qPCR) for Toxoplasma gondii in blood and cerebrospinal fluid (CSF) and the limited availability of molecular diagnostics and imaging technology leaves clinicians in resource-limited settings with few options other than empiric treatment.

An international team of scientists led by the University of Illinois Chicago (Chicago, IL, USA) recruited in a study 164 HIV positive patients from Peru and Bolivia and 51 ambulatory HIV/T. gondii positive patients for controls. Blood and urine specimens were taken at enrollment, which for most hospitalized patients was shortly after admission; remnant CSF was collected if the subject underwent lumbar puncture as part of their medical care. CD4 and CD8 cell counts and viral loads were abstracted from participants’ charts.

The investigators have described a proof of concept for novel urine diagnostics for TE using Poly-N-isoproplyacrylamide nanoparticles dyed with Reactive Blue-221 to concentrate antigens, substantially increasing the limit of detection. After nanoparticle-concentration, a standard western blotting technique with a monoclonal antibody was used for antigen detection. Toxoplasma gondii IgG serological status was determined with an in-house enzyme linked immunosorbent assay (ELISA). For qPCR, target sequences were amplified using a Light Cycler (Applied Biosciences, Foster City, CA, USA). Digested samples were analyzed by parallel-reaction-monitoring (PRM) on an Orbitrap Fusion mass spectrometer with a nanospray EASY-nLC 1200 HPLC (Thermo Fisher Scientific, Waltham, MA, USA).

The team reported that the limit of detection (LoD) of T. gondii antigens GRA1 and SAG1 was 7.8pg/mL and 31.3pg/mL, respectively. To characterize this diagnostic approach, 164 hospitalized HIV-infected patients with neurological symptoms compatible with TE were tested for 1) T. gondii serology (121/147, positive samples/total samples tested), 2) qPCR in cerebrospinal fluid (11/41), 3) qPCR in blood (10/112), and 4) urinary GRA1 (30/164) and SAG1 (12/164). GRA1 appears to be superior to SAG1 for detection of TE antigens in urine. Fifty-one HIV-infected, T. gondii seropositive but asymptomatic persons all tested negative by nanoparticle western blot and blood qPCR, suggesting the test has good specificity for TE for both GRA1 and SAG1. In a subgroup of 44 patients, urine samples were assayed with mass spectrometry PRM for the presence of T. gondii antigens. PRM identified antigens in eight samples, six of which were concordant with the urine diagnostic.

The authors concluded that their results demonstrate nanoparticle technology’s potential for a noninvasive diagnostic test for TE and that GRA1 is a promising target for antigen based diagnostics for TE. The study was published on March 2, 2021 in the journal PLOS Neglected Tropical Diseases.

Related Links:
University of Illinois Chicago
Applied Biosciences
Thermo Fisher Scientific


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
H.pylori Test
Humasis H.pylori Card
New
Coagulation Analyzer
CS-2400

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.