Rapid Lateral Flow Assays Detect COVID-19 Variants and Differentiate COVID-19 from Other Respiratory Viral Diseases
|
By LabMedica International staff writers Posted on 02 Mar 2021 |

Image: Illustration of a lateral flow assay (LFA) (Photo courtesy of U.S. National Aeronautics and Space Administration via Wikimedia Commons)
A recent publication reported the development of two rapid diagnostic tests - one that detects COVID-19 variants and one that differentiates COVID-19 from other respiratory viral diseases.
Investigators at the University of Minnesota Medical School (Minneapolis/St.Paul, USA) used the CRISPR/Cas9 gene editing tool to develop two rapid lateral flow diagnostic tests. CRISPRs (clustered regularly interspaced short palindromic repeats) are segments of prokaryotic DNA containing short repetitions of base sequences. Each repetition is followed by short segments of "spacer DNA" from previous exposures to a bacterial virus or plasmid. Since 2013, the CRISPR/Cas9 system has been used in research for gene editing (adding, disrupting, or changing the sequence of specific genes) and gene regulation. By delivering the Cas9 enzyme and appropriate guide RNAs (sgRNAs) into a cell, the organism's genome can be cut at any desired location. The conventional CRISPR/Cas9 system from Streptococcus pyogenes is composed of two parts: the Cas9 enzyme, which cleaves the DNA molecule and specific RNA guides that shepherd the Cas9 protein to the target gene on a DNA strand.
The investigators integrated commercially available reagents into a CRISPR/Cas9-based lateral flow assay (LFA) that could detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequences with single-base specificity. This approach required minimal equipment and represented a simplified platform for field-based deployment. They also developed a rapid, multiplex fluorescence CRISPR/Cas9 nuclease cleavage assay capable of detecting and differentiating SARS-CoV-2, influenza A and B, and respiratory syncytial virus (RSV) in a single reaction.
The LFA test strips employed bound fluorescein isothiocyanate (FITC)/6-Carboxyfluorescein (FAM) and biotin to generate a positive result. Therefore, the investigators used a FITC/FAM-labeled PCR primer and a nuclease inactive (“dead”) biotinylated Cas9 and a single sgRNA specific for the ORF8a gene of SARS-Co-V-2 to label amplicons for detection by LFA. This approach was capable of single-nucleotide resolution and avoided false positives from primer dimer or non-specific amplification artifacts that could occur with the use of tandem FITC- and biotin-labeled primers for LFA.
"The approval of the SARS-CoV-2 vaccine is highly promising, but the time between first doses and population immunity may be months," said first author Dr. Mark J. Osborn, assistant professor of pediatrics at the University of Minnesota Medical School. "This testing platform can help bridge the gap between immunization and immunity."
The rapid LFA tests were described in the February 12, 2021, online edition of the journal Bioengineering.
Related Links:
University of Minnesota Medical School
Investigators at the University of Minnesota Medical School (Minneapolis/St.Paul, USA) used the CRISPR/Cas9 gene editing tool to develop two rapid lateral flow diagnostic tests. CRISPRs (clustered regularly interspaced short palindromic repeats) are segments of prokaryotic DNA containing short repetitions of base sequences. Each repetition is followed by short segments of "spacer DNA" from previous exposures to a bacterial virus or plasmid. Since 2013, the CRISPR/Cas9 system has been used in research for gene editing (adding, disrupting, or changing the sequence of specific genes) and gene regulation. By delivering the Cas9 enzyme and appropriate guide RNAs (sgRNAs) into a cell, the organism's genome can be cut at any desired location. The conventional CRISPR/Cas9 system from Streptococcus pyogenes is composed of two parts: the Cas9 enzyme, which cleaves the DNA molecule and specific RNA guides that shepherd the Cas9 protein to the target gene on a DNA strand.
The investigators integrated commercially available reagents into a CRISPR/Cas9-based lateral flow assay (LFA) that could detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequences with single-base specificity. This approach required minimal equipment and represented a simplified platform for field-based deployment. They also developed a rapid, multiplex fluorescence CRISPR/Cas9 nuclease cleavage assay capable of detecting and differentiating SARS-CoV-2, influenza A and B, and respiratory syncytial virus (RSV) in a single reaction.
The LFA test strips employed bound fluorescein isothiocyanate (FITC)/6-Carboxyfluorescein (FAM) and biotin to generate a positive result. Therefore, the investigators used a FITC/FAM-labeled PCR primer and a nuclease inactive (“dead”) biotinylated Cas9 and a single sgRNA specific for the ORF8a gene of SARS-Co-V-2 to label amplicons for detection by LFA. This approach was capable of single-nucleotide resolution and avoided false positives from primer dimer or non-specific amplification artifacts that could occur with the use of tandem FITC- and biotin-labeled primers for LFA.
"The approval of the SARS-CoV-2 vaccine is highly promising, but the time between first doses and population immunity may be months," said first author Dr. Mark J. Osborn, assistant professor of pediatrics at the University of Minnesota Medical School. "This testing platform can help bridge the gap between immunization and immunity."
The rapid LFA tests were described in the February 12, 2021, online edition of the journal Bioengineering.
Related Links:
University of Minnesota Medical School
Latest Molecular Diagnostics News
- Finger Prick Blood Test Shows Promise for Early Alzheimer’s Detection
- Blood Test Breakthrough Enables Earlier, Less Invasive Endometriosis Detection
- AI Accurately Predicts Prematurity Complications in Newborns from Blood Samples
- Diagnostic Toolbox to Rapidly and Reliably Detect Lymphatic Disease
- Next-Generation Sequencing Could Enhance Early Disease Detection in Newborns
- Simple Blood Test Detects Cancer in Patients with Non-Specific Symptoms
- New Method Accurately Predicts Asthma Attacks Five Years in Advance
- Hidden Genetic Subgroup Sheds New Light on Brain Tumors
- Multiplex PCR Panel Promises Faster Answers for GI Infections
- Blood Test Shows Extent of Brain Injury After Stroke
- Liquid Biopsy Approach Enhances Detection of Aggressive Breast Cancer Cells
- Novel Liquid Biopsy Technology to Advance Cancer Diagnostics
- POC Oral Fluid Test Diagnoses HIV Infection in 20 Minutes
- Blood Metabolite Signature Test Better Predicts Type 2 Diabetes Risk
- Genetic Test Could Detect Predisposition to Pancreatic Cancer
- Blood Test Predicts Crohn’s Disease Years Before Symptoms Appear
Channels
Clinical Chemistry
view channel
Study Compares Analytical Performance of Quantitative Hepatitis B Surface Antigen Assays
Hepatitis B virus (HBV) continues to pose a significant global health challenge, with chronic infection affecting hundreds of millions of people despite effective vaccines and antiviral therapies.... Read more
Blood Test Could Predict and Identify Early Relapses in Myeloma Patients
Multiple myeloma is an incurable cancer of the bone marrow, and while many patients now live for more than a decade after diagnosis, a significant proportion relapse much earlier with poor outcomes.... Read moreHematology
view channel
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channelAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read more
New Test Measures How Effectively Antibiotics Kill Bacteria
Antibiotics are typically evaluated by how well they inhibit bacterial growth in laboratory tests, but growth inhibition does not always mean the bacteria are actually killed. Some pathogens can survive... Read morePathology
view channel
Single-Cell Profiling Technique Could Guide Early Cancer Detection
Cancer often develops silently over many years, as individual cells acquire mutations that give them a growth advantage long before a tumor forms. These pre-malignant cells can exist alongside normal cells... Read more
Intraoperative Tumor Histology to Improve Cancer Surgeries
Surgical removal of cancer remains the first-line treatment for many tumors, but ensuring that all cancerous tissue is removed while preserving healthy tissue is a major challenge. Surgeons currently rely... Read more
Rapid Stool Test Could Help Pinpoint IBD Diagnosis
Inflammatory bowel disease (IBD) is a chronic condition in which the immune system mistakenly attacks the digestive tract, causing persistent gut inflammation. Diagnosis and disease monitoring often depend... Read more
AI-Powered Label-Free Optical Imaging Accurately Identifies Thyroid Cancer During Surgery
Thyroid cancer is the most common endocrine cancer, and its rising detection rates have increased the number of patients undergoing surgery. During tumor removal, surgeons often face uncertainty in distinguishing... Read moreTechnology
view channelAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channel
WHX Labs Dubai to Gather Global Experts in Antimicrobial Resistance at Inaugural AMR Leaders’ Summit
World Health Expo (WHX) Labs in Dubai (formerly Medlab Middle East), which will be held at Dubai World Trade Centre from 10-13 February, will address the growing global threat of antimicrobial resistance... Read more







