We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

ABO Histo-Blood Groups Influence Makeup of Gut Microbiome

By LabMedica International staff writers
Posted on 01 Feb 2021
Image: False-colored electron microscopic image of Bifidobacterium that are one of the major genera of bacteria that make up the gastrointestinal tract and are associated with variants in the lactase gene locus (Photo courtesy of The Keck Science Department of the Claremont Colleges)
Image: False-colored electron microscopic image of Bifidobacterium that are one of the major genera of bacteria that make up the gastrointestinal tract and are associated with variants in the lactase gene locus (Photo courtesy of The Keck Science Department of the Claremont Colleges)
Recent genome-wide association studies yielded inconsistent, underpowered and rarely replicated results such that the role of human host genetics as a contributing factor to microbiome assembly and structure remains uncertain.

The intestinal microbiome is implicated as an important modulating factor in multiple inflammatory, neurologic and neoplastic disease. Host genetics, including genes affecting ABO histo-blood groups, may influence the composition of the human gut microbiome.

A large team of scientists at Kiel University (Kiel, Germany) and their colleagues conducted a large genome-wide association study of microbial traits that drew on five cohorts from different regions of Germany that encompassed a total of 8,965 individuals. Following a series of multivariate, univariate abundance, and presence-absence pattern analyses, they uncovered 38 genetic loci associated with the presence of particular bacteria and broad gut microbial community composition.

The team noted an association between variants in the lactase gene locus (LCT) and the genus Bifidobacterium. This association was nominal in four of the five cohorts and stronger in the fifth. They also found an association between a Barnesiella bacterial species and variants in the biliverdin reductase A (BLVRA) gene, which encodes a protein that inhibits toll-like receptor 4 (TLR4) gene expression. The TLR-4 protein is a pattern recognition receptor of the ABO allele.

The scientists investigated ABO histo-blood group associations, including FUT2 secretor status, with microbial features. They found a correlation between non-O blood group and positive secretor status and certain Bacteroides species in four of the five cohorts. Another Bacteroides species, they noted, was also associated with ABO blood status, bolstering the idea that there are histo-blood group-dependent effects on Bacteroides. They further uncovered associations between Faecalibacterium and ABO and between Holdemanella and ABO, as well as an association between FUT2 secretor status and the abundance of Roseburia, independent of ABO type.

Through a Mendelian randomization analysis, the scientists found 19 suggestive microbial effects on host traits, nine of which were tied to Inflammatory Bowel Disease (IBD) or Crohn's disease. One, for instance, suggests that a group of Bacteroides is associated with ABO histo-blood group status and a group of Prevotella appears to protect against Crohn's disease.

Malte Christoph Rühlemann, PhD, the first author of the study, said, “Ultimately, the aim is to identify candidate genes that are investigated in functional studies and that can at one time point be used in a framework of personalized treatment which considers multiple layers of host factors: life history, genetics, the microbiome, and the interaction of them all as target and modulator of treatment success.”

The authors concluded that their findings support the notion that ABO histo-blood group and sector status influences the makeup of the gut microbiome and that they could potentially represent targets for modulating human health and disease. The study was published on January 18, 2021 in the journal Nature Genetics.

Related Links:
Kiel University

New
Gold Member
Automated MALDI-TOF MS System
EXS 3000
Collection and Transport System
PurSafe Plus®
New
Gold Member
Collection and Transport System
PurSafe Plus®
Alcohol Testing Device
Dräger Alcotest 7000

Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Industry

view channel
Image: The collaboration aims to improve access to Hb variant testing with the Gazelle POC diagnostic platform (Photo courtesy of Hemex Health)

Terumo BCT and Hemex Health Collaborate to Improve Access to Testing for Hemoglobin Disorders

Millions of people worldwide living with sickle cell disease and other hemoglobin disorders experience delayed diagnosis and limited access to effective care, particularly in regions where testing is scarce.... Read more