ABO Histo-Blood Groups Influence Makeup of Gut Microbiome
|
By LabMedica International staff writers Posted on 01 Feb 2021 |

Image: False-colored electron microscopic image of Bifidobacterium that are one of the major genera of bacteria that make up the gastrointestinal tract and are associated with variants in the lactase gene locus (Photo courtesy of The Keck Science Department of the Claremont Colleges)
Recent genome-wide association studies yielded inconsistent, underpowered and rarely replicated results such that the role of human host genetics as a contributing factor to microbiome assembly and structure remains uncertain.
The intestinal microbiome is implicated as an important modulating factor in multiple inflammatory, neurologic and neoplastic disease. Host genetics, including genes affecting ABO histo-blood groups, may influence the composition of the human gut microbiome.
A large team of scientists at Kiel University (Kiel, Germany) and their colleagues conducted a large genome-wide association study of microbial traits that drew on five cohorts from different regions of Germany that encompassed a total of 8,965 individuals. Following a series of multivariate, univariate abundance, and presence-absence pattern analyses, they uncovered 38 genetic loci associated with the presence of particular bacteria and broad gut microbial community composition.
The team noted an association between variants in the lactase gene locus (LCT) and the genus Bifidobacterium. This association was nominal in four of the five cohorts and stronger in the fifth. They also found an association between a Barnesiella bacterial species and variants in the biliverdin reductase A (BLVRA) gene, which encodes a protein that inhibits toll-like receptor 4 (TLR4) gene expression. The TLR-4 protein is a pattern recognition receptor of the ABO allele.
The scientists investigated ABO histo-blood group associations, including FUT2 secretor status, with microbial features. They found a correlation between non-O blood group and positive secretor status and certain Bacteroides species in four of the five cohorts. Another Bacteroides species, they noted, was also associated with ABO blood status, bolstering the idea that there are histo-blood group-dependent effects on Bacteroides. They further uncovered associations between Faecalibacterium and ABO and between Holdemanella and ABO, as well as an association between FUT2 secretor status and the abundance of Roseburia, independent of ABO type.
Through a Mendelian randomization analysis, the scientists found 19 suggestive microbial effects on host traits, nine of which were tied to Inflammatory Bowel Disease (IBD) or Crohn's disease. One, for instance, suggests that a group of Bacteroides is associated with ABO histo-blood group status and a group of Prevotella appears to protect against Crohn's disease.
Malte Christoph Rühlemann, PhD, the first author of the study, said, “Ultimately, the aim is to identify candidate genes that are investigated in functional studies and that can at one time point be used in a framework of personalized treatment which considers multiple layers of host factors: life history, genetics, the microbiome, and the interaction of them all as target and modulator of treatment success.”
The authors concluded that their findings support the notion that ABO histo-blood group and sector status influences the makeup of the gut microbiome and that they could potentially represent targets for modulating human health and disease. The study was published on January 18, 2021 in the journal Nature Genetics.
Related Links:
Kiel University
The intestinal microbiome is implicated as an important modulating factor in multiple inflammatory, neurologic and neoplastic disease. Host genetics, including genes affecting ABO histo-blood groups, may influence the composition of the human gut microbiome.
A large team of scientists at Kiel University (Kiel, Germany) and their colleagues conducted a large genome-wide association study of microbial traits that drew on five cohorts from different regions of Germany that encompassed a total of 8,965 individuals. Following a series of multivariate, univariate abundance, and presence-absence pattern analyses, they uncovered 38 genetic loci associated with the presence of particular bacteria and broad gut microbial community composition.
The team noted an association between variants in the lactase gene locus (LCT) and the genus Bifidobacterium. This association was nominal in four of the five cohorts and stronger in the fifth. They also found an association between a Barnesiella bacterial species and variants in the biliverdin reductase A (BLVRA) gene, which encodes a protein that inhibits toll-like receptor 4 (TLR4) gene expression. The TLR-4 protein is a pattern recognition receptor of the ABO allele.
The scientists investigated ABO histo-blood group associations, including FUT2 secretor status, with microbial features. They found a correlation between non-O blood group and positive secretor status and certain Bacteroides species in four of the five cohorts. Another Bacteroides species, they noted, was also associated with ABO blood status, bolstering the idea that there are histo-blood group-dependent effects on Bacteroides. They further uncovered associations between Faecalibacterium and ABO and between Holdemanella and ABO, as well as an association between FUT2 secretor status and the abundance of Roseburia, independent of ABO type.
Through a Mendelian randomization analysis, the scientists found 19 suggestive microbial effects on host traits, nine of which were tied to Inflammatory Bowel Disease (IBD) or Crohn's disease. One, for instance, suggests that a group of Bacteroides is associated with ABO histo-blood group status and a group of Prevotella appears to protect against Crohn's disease.
Malte Christoph Rühlemann, PhD, the first author of the study, said, “Ultimately, the aim is to identify candidate genes that are investigated in functional studies and that can at one time point be used in a framework of personalized treatment which considers multiple layers of host factors: life history, genetics, the microbiome, and the interaction of them all as target and modulator of treatment success.”
The authors concluded that their findings support the notion that ABO histo-blood group and sector status influences the makeup of the gut microbiome and that they could potentially represent targets for modulating human health and disease. The study was published on January 18, 2021 in the journal Nature Genetics.
Related Links:
Kiel University
Latest Molecular Diagnostics News
- Blood Test to Help Low-Risk Gastric Cancer Patients Avoid Unnecessary Surgery
- First-Of-Its-Kind Automated System Speeds Myeloma Diagnosis
- Blood Protein Profiles Predict Mortality Risk for Earlier Medical Intervention
- First Of Its Kind Blood Test Detects Gastric Cancer in Asymptomatic Patients
- Portable Molecular Test Detects STIs at POC in 15 Minutes
- Benchtop Analyzer Runs Chemistries, Immunoassays and Hematology in Single Device
- POC Bordetella Test Delivers PCR-Accurate Results in 15 Minutes
- Pinprick Blood Test Could Detect Disease 10 Years Before Symptoms Appear
- Refined C-Reactive Protein Cutoffs Help Assess Sepsis Risk in Preterm Babies
- Blood Test Accurately Detects Brain Amyloid Pathology in Symptomatic Patients
- New Molecular Test Improves Diagnostic Accuracy of Lyme Disease
- New Genetic Test Enables Faster Diagnosis of Rare Diseases
- Urine Test Detects Inherited Neuropathy Missed by Genetic Screening
- Genomic Test Predicts Risk of SCC Metastasis
- Microfluidic Device Predicts Pancreatic Cancer Recurrence After Surgery
- New Molecular Test Simultaneously Detects Three Major Fungal Infections
Channels
Clinical Chemistry
view channel
Chemical Imaging Probe Could Track and Treat Prostate Cancer
Prostate cancer remains a leading cause of illness and death among men, with many patients eventually developing resistance to standard hormone-blocking therapies. These drugs often lose effectiveness... Read more
Mismatch Between Two Common Kidney Function Tests Indicates Serious Health Problems
Creatinine has long been the standard for measuring kidney filtration, while cystatin C — a protein produced by all human cells — has been recommended as a complementary marker because it is influenced... Read moreMolecular Diagnostics
view channel
Blood Test to Help Low-Risk Gastric Cancer Patients Avoid Unnecessary Surgery
Accurately identifying lymph node metastasis in early-stage gastric cancer remains a major clinical challenge. CT imaging often misses up to half of lymph node–positive cases, leading clinicians to recommend... Read more
First-Of-Its-Kind Automated System Speeds Myeloma Diagnosis
More than 176,000 people are diagnosed with multiple myeloma worldwide each year, yet the current diagnostic pathway can be slow and uncertain, often relying on a highly subjective interpretation of test results.... Read moreHematology
view channel
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
Gene Signature Test Predicts Response to Key Breast Cancer Treatment
DK4/6 inhibitors paired with hormone therapy have become a cornerstone treatment for advanced HR+/HER2– breast cancer, slowing tumor growth by blocking key proteins that drive cell division.... Read more
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read morePathology
view channel
AI Tool Outperforms Doctors in Spotting Blood Cell Abnormalities
Diagnosing blood disorders depends on recognizing subtle abnormalities in cell size, shape, and structure, yet this process is slow, subjective, and requires years of expert training. Even specialists... Read more
AI Tool Rapidly Analyzes Complex Cancer Images for Personalized Treatment
Complex digital biopsy images that typically take an expert pathologist up to 20 minutes to assess can now be analyzed in about one minute using a new artificial intelligence (AI) tool. The technology... Read moreTechnology
view channel
AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
Early detection of head and neck cancer remains difficult because the disease produces few or no symptoms in its earliest stages, and lesions often lie deep within the head or neck, where biopsy or endoscopy... Read more
AI-Powered Biosensor Technology to Enable Breath Test for Lung Cancer Detection
Detecting lung cancer early remains one of the biggest challenges in oncology, largely because current tools are invasive, expensive, or unable to identify the disease in its earliest phases.... Read moreIndustry
view channel
Abbott Acquires Cancer-Screening Company Exact Sciences
Abbott (Abbott Park, IL, USA) has entered into a definitive agreement to acquire Exact Sciences (Madison, WI, USA), enabling it to enter and lead in fast-growing cancer diagnostics segments.... Read more






 Analyzer.jpg)

