Genetic Alterations Associated with Sporadic Congenital Hydrocephalus
|
By LabMedica International staff writers Posted on 02 Nov 2020 |

Image: A neural stem cell model of sporadic congenital hydrocephalus (Photo courtesy of Yale University School of Medicine).
Congenital hydrocephalus (CH), characterized by enlarged brain ventricles, is considered a disease of excessive cerebrospinal fluid (CSF) accumulation and thereby treated with neurosurgical CSF diversion with high morbidity and failure rates.
Congenital hydrocephalus is present in the infant prior to birth, meaning the fetus developed hydrocephalus in utero during fetal development. The most common cause of congenital hydrocephalus is aqueductal stenosis, which occurs when the narrow passage between the third and fourth ventricles in the brain is blocked or too narrow to allow sufficient CSF to drain.
A multidisciplinary team at Yale University School of Medicine (New Haven, CT, USA) performed whole-exome sequencing of 381 individuals with sporadic congenital hydrocephalus who were treated with neurosurgery, a cohort that included 232 parent-offspring trios. Another 1,798 trios of unaffected siblings and parents of individuals with autism spectrum disorder were analyzed in parallel as a control group.
The team uncovered 12 genes with two or more de novo mutations each that were predicted to be protein damaging. Five of these genes: TRIM71, SMARCC1, PTEN, PIK3CA, and FOXJ1, had significantly more mutations than expected. The investigators further estimated that about 22% of sporadic congenital hydrocephalus are due to rare, damaging mutations. The teams’ analysis additionally implicated a number of genes in the PI3K signaling pathway in congenital hydrocephalus. These genes regulate cell growth, proliferation, and differentiation in numerous tissues, including developing neural stem cells. In particular, they uncovered three de novo mutations in PI3KCA, three in PTEN, and two in MTOR.
Individuals with mutations in TRIM71, which maintains stem cell pluripotency, are more likely to have cranial nerve defect, non-obstructive inter-hemispheric cysts, and hearing loss. Meanwhile, individuals with mutations in SMARCC1, which regulates gene expression needed for neural stem cell proliferation, differentiation, and survival during telencephalon development, are more likely to have aqueductal stenosis and cardiac and skeletal abnormalities.
All together, the known, high-confidence, and probable risk genes for congenital hydrocephalus converge in gene co-expression networks of the mid-gestational human cortex, In particular, the congenital hydrocephalus risk genes converge on a network previously linked to autism spectrum disorder that is enriched for neuronal differentiation and RNA processing gene ontology terms.
Kristopher T. Kahle, MD, PhD, an assistant professor of neurosurgery and a senior author of the study, said, “It is possible that some of the neurological problems that many of these congenital hydrocephalus patients have may not be due to inadequately working shunts, but are in fact neurodevelopmental sequelae of a genetic condition that alters neuronal function.”
The authors concluded that that genetic disruptions affecting early brain development may drive sporadic congenital hydrocephalus. Their data implicate genetically encoded neural stem cell dysregulation and an associated impairment of fetal neurogliogenesis as primary pathophysiological events in a significant number of congenital hydrocephalus cases. The study was published on October 19, 2020 in the journal Nature Medicine.
Related Links:
Yale University School of Medicine
Congenital hydrocephalus is present in the infant prior to birth, meaning the fetus developed hydrocephalus in utero during fetal development. The most common cause of congenital hydrocephalus is aqueductal stenosis, which occurs when the narrow passage between the third and fourth ventricles in the brain is blocked or too narrow to allow sufficient CSF to drain.
A multidisciplinary team at Yale University School of Medicine (New Haven, CT, USA) performed whole-exome sequencing of 381 individuals with sporadic congenital hydrocephalus who were treated with neurosurgery, a cohort that included 232 parent-offspring trios. Another 1,798 trios of unaffected siblings and parents of individuals with autism spectrum disorder were analyzed in parallel as a control group.
The team uncovered 12 genes with two or more de novo mutations each that were predicted to be protein damaging. Five of these genes: TRIM71, SMARCC1, PTEN, PIK3CA, and FOXJ1, had significantly more mutations than expected. The investigators further estimated that about 22% of sporadic congenital hydrocephalus are due to rare, damaging mutations. The teams’ analysis additionally implicated a number of genes in the PI3K signaling pathway in congenital hydrocephalus. These genes regulate cell growth, proliferation, and differentiation in numerous tissues, including developing neural stem cells. In particular, they uncovered three de novo mutations in PI3KCA, three in PTEN, and two in MTOR.
Individuals with mutations in TRIM71, which maintains stem cell pluripotency, are more likely to have cranial nerve defect, non-obstructive inter-hemispheric cysts, and hearing loss. Meanwhile, individuals with mutations in SMARCC1, which regulates gene expression needed for neural stem cell proliferation, differentiation, and survival during telencephalon development, are more likely to have aqueductal stenosis and cardiac and skeletal abnormalities.
All together, the known, high-confidence, and probable risk genes for congenital hydrocephalus converge in gene co-expression networks of the mid-gestational human cortex, In particular, the congenital hydrocephalus risk genes converge on a network previously linked to autism spectrum disorder that is enriched for neuronal differentiation and RNA processing gene ontology terms.
Kristopher T. Kahle, MD, PhD, an assistant professor of neurosurgery and a senior author of the study, said, “It is possible that some of the neurological problems that many of these congenital hydrocephalus patients have may not be due to inadequately working shunts, but are in fact neurodevelopmental sequelae of a genetic condition that alters neuronal function.”
The authors concluded that that genetic disruptions affecting early brain development may drive sporadic congenital hydrocephalus. Their data implicate genetically encoded neural stem cell dysregulation and an associated impairment of fetal neurogliogenesis as primary pathophysiological events in a significant number of congenital hydrocephalus cases. The study was published on October 19, 2020 in the journal Nature Medicine.
Related Links:
Yale University School of Medicine
Latest Pathology News
- New Molecular Analysis Tool to Improve Disease Diagnosis
- Tears Offer Noninvasive Alternative for Diagnosing Neurodegenerative Diseases
- AI-Powered Method Combines Blood Data to Accurately Measure Biological Age
- AI Tool Detects Cancer in Blood Samples In 10 Minutes
- AI Pathology Analysis System Delivers Comprehensive Cancer Diagnosis
- AI Improves Cervical Cancer Screening in Low-Resource Settings
- New Multi-Omics Tool Illuminates Cancer Progression
- New Technique Detects Genetic Mutations in Brain Tumors During Surgery within 25 Minutes
- New Imaging Tech to Improve Diagnosis and Treatment of Skin Cancers
- Serially Testing Brain Tumor Samples Reveals Treatment Response in Glioblastoma Patients
- High-Accuracy Tumor Detection Method Offers Real-Time Surgical Guidance
- AI Tool Detects Hidden Warning Signs of Disease Inside Single Cells
- Automated Tool Detects Early Warning Signs of Breast Cancer
- New Software Tool Improves Analysis of Complex Spatial Data from Tissues
- AI Tool Helps Surgeons Distinguish Aggressive Glioblastoma from Other Brain Cancers in Real-Time
- New Tool Could Revolutionize Acute Leukemia Diagnosis
Channels
Clinical Chemistry
view channel
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read more
Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
Kidney disease is typically diagnosed through blood or urine tests, often when patients present with symptoms such as blood in urine, shortness of breath, or weight loss. While these tests are common,... Read moreHematology
view channel
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more
Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read moreImmunology
view channel
Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
Immunotherapy has revolutionized cancer care by harnessing the immune system to fight tumors, yet predicting who will benefit remains a major challenge. Many patients undergo costly and taxing treatment... Read more
Signature Genes Predict T-Cell Expansion in Cancer Immunotherapy
Modern cancer immunotherapies rely on the ability of CD8⁺ T cells to rapidly multiply within tumors, generating the immune force needed to eliminate cancer cells. However, the biological triggers behind... Read moreMicrobiology
view channel
High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read more
Fast Noninvasive Bedside Test Uses Sugar Fingerprint to Detect Fungal Infections
Candida bloodstream infections are a growing global health threat, causing an estimated 6 million cases and 3.8 million deaths annually. Hospitals are particularly vulnerable, as weakened patients after... Read morePathology
view channel
New Molecular Analysis Tool to Improve Disease Diagnosis
Accurately distinguishing between similar biomolecules such as proteins is vital for biomedical research and diagnostics, yet existing analytical tools often fail to detect subtle structural or compositional... Read more
Tears Offer Noninvasive Alternative for Diagnosing Neurodegenerative Diseases
Diagnosing and monitoring eye and neurodegenerative diseases often requires invasive procedures to access ocular fluids. Ocular fluids like aqueous humor and vitreous humor contain valuable molecular information... Read moreTechnology
view channel
Cell-Sorting Device Uses Electromagnetic Levitation to Precisely Direct Cell Movement
Sorting different cell types—such as cancerous versus healthy or live versus dead cells—is a critical task in biology and medicine. However, conventional methods often require labeling, chemical exposure,... Read more
Embedded GPU Platform Enables Rapid Blood Profiling for POC Diagnostics
Blood tests remain a cornerstone of medical diagnostics, but traditional imaging and analysis methods can be slow, costly, and reliant on dyes or contrast agents. Now, scientists have developed a real-time,... Read moreIndustry
view channel
Qiagen Acquires Single-Cell Omics Firm Parse Biosciences
QIAGEN (Venlo, Netherlands) has entered into a definitive agreement to fully acquire Parse Biosciences (Seattle, WA, USA), a provider of scalable, instrument-free solutions for single-cell research.... Read more
Puritan Medical Products Showcasing Innovation at AMP2025 in Boston
Puritan Medical Products (Guilford, ME, USA), the world’s most trusted manufacturer of swabs and specimen collection devices, is set to exhibit at AMP2025 in Boston, Massachusetts, from November 11–15.... Read more
Advanced Instruments Merged Under Nova Biomedical Name
Advanced Instruments (Norwood, MA, USA) and Nova Biomedical (Waltham, MA, USA) are now officially doing business under a single, unified brand. This transformation is expected to deliver greater value... Read more




 assay.jpg)



