Unconventional T Cells in COVID-19 Patients Predicts Disease Outcome
By LabMedica International staff writers Posted on 17 Sep 2020 |

Image: Increased MAIT and iNKT cell activation is associated with improved outcome in severe COVID-19 patients (Photo courtesy of the University of Tours).
While most people infected with the SARS-CoV-2 virus experience relatively mild symptoms, some patients mount an aberrant inflammatory response that can damage the lungs and cause acute respiratory distress syndrome (ARDS), potentially resulting in the patient's death.
Unconventional T cells are a diverse class of immune cells that help control the response to viral infection and are commonly found in the lungs and other mucosal tissues in the body. This heterogeneous class of T cells comprises three main lineages, including mucosa-associated invariant T (MAIT), γδT, and invariant natural killer T (iNKT) cells.
Medical scientists at the University of Tours (Tours, France) examined 30 patients admitted to intensive care with severe COVID-19 and compared the immune cells in their blood and lungs to those found in healthy volunteers or patients admitted to the ICU for reasons other than COVID-19. Endotracheal aspirates (ETA) was collected from seven intubated non–COVID-19 or 20 COVID-19 patients who were under invasive mechanical ventilation.
Staining was performed using antibodies from BioLegend (San Diego, CA, USA) and Miltenyi Biotec (Bergisch Gladbach, Germany). Inflammatory mediators were measured in sera and supernatants of ETA using the Bio-Plex Pro Human cytokines screening panel (Bio-Rad, Hercules, CA, USA) in a multiplex fluorescent bead assay (Luminex Technologies, Austin, TX, USA).
The investigators reported that they found two types of unconventional T cells, known as mucosal-associated invariant T (MAIT) and invariant natural killer T (iNKT) cells, were dramatically reduced in the blood of patients with severe COVID-19. However, the number of MAIT cells increased in the patients' airways, suggesting that these cells might move from the blood to the lungs to control the response to SARS-CoV-2 infection. The MAIT and iNKT cells of COVID-19 patients appeared to be highly activated and produced distinct sets of inflammatory molecules. The team found that patients whose circulating MAIT and iNKT cells were particularly active at the time of their admittance to the ICU were less susceptible to hypoxemia (low blood oxygen levels) and were discharged sooner than patients whose MAIT and iNKT cells were less active.
Christophe Paget, PhD, a medical immunologist and senior author of the study said, “Despite this, the role of unconventional T cells in the pathophysiological process of SARS-CoV-2-driven ARDS has not yet been explored. Altogether, our findings should encourage further studies on MAIT and iNKT cells in SARS-CoV-2-induced ARDS to assess their potential as biomarkers and/or targets for immune intervention strategies.” The study was published on September 4, 2020 in the Journal of Experimental Medicine.
Related Links:
University of Tours
BioLegend
Miltenyi Biotec
Bio-Rad
Luminex Technologies
Unconventional T cells are a diverse class of immune cells that help control the response to viral infection and are commonly found in the lungs and other mucosal tissues in the body. This heterogeneous class of T cells comprises three main lineages, including mucosa-associated invariant T (MAIT), γδT, and invariant natural killer T (iNKT) cells.
Medical scientists at the University of Tours (Tours, France) examined 30 patients admitted to intensive care with severe COVID-19 and compared the immune cells in their blood and lungs to those found in healthy volunteers or patients admitted to the ICU for reasons other than COVID-19. Endotracheal aspirates (ETA) was collected from seven intubated non–COVID-19 or 20 COVID-19 patients who were under invasive mechanical ventilation.
Staining was performed using antibodies from BioLegend (San Diego, CA, USA) and Miltenyi Biotec (Bergisch Gladbach, Germany). Inflammatory mediators were measured in sera and supernatants of ETA using the Bio-Plex Pro Human cytokines screening panel (Bio-Rad, Hercules, CA, USA) in a multiplex fluorescent bead assay (Luminex Technologies, Austin, TX, USA).
The investigators reported that they found two types of unconventional T cells, known as mucosal-associated invariant T (MAIT) and invariant natural killer T (iNKT) cells, were dramatically reduced in the blood of patients with severe COVID-19. However, the number of MAIT cells increased in the patients' airways, suggesting that these cells might move from the blood to the lungs to control the response to SARS-CoV-2 infection. The MAIT and iNKT cells of COVID-19 patients appeared to be highly activated and produced distinct sets of inflammatory molecules. The team found that patients whose circulating MAIT and iNKT cells were particularly active at the time of their admittance to the ICU were less susceptible to hypoxemia (low blood oxygen levels) and were discharged sooner than patients whose MAIT and iNKT cells were less active.
Christophe Paget, PhD, a medical immunologist and senior author of the study said, “Despite this, the role of unconventional T cells in the pathophysiological process of SARS-CoV-2-driven ARDS has not yet been explored. Altogether, our findings should encourage further studies on MAIT and iNKT cells in SARS-CoV-2-induced ARDS to assess their potential as biomarkers and/or targets for immune intervention strategies.” The study was published on September 4, 2020 in the Journal of Experimental Medicine.
Related Links:
University of Tours
BioLegend
Miltenyi Biotec
Bio-Rad
Luminex Technologies
Latest Immunology News
- Blood Test Detects Organ Rejection in Heart Transplant Patients
- Liquid Biopsy Approach to Transform Diagnosis, Monitoring and Treatment of Lung Cancer
- Computational Tool Exposes Hidden Cancer DNA Changes Influencing Treatment Resistance
- New Tool Detects Breast Cancer Relapses Five Years in Advance
- T Cells in Blood Can Detect Parkinson's Years Before Diagnosis
- POC Diagnostic Platform Performs Immune Analysis Using One Drop of Fingertip Blood
- Treatment Switching Guided by Liquid Biopsy Blood Tests Improves Outcomes for Breast Cancer Patients
- First-Of-Its-Kind Device Profiles Newborns' Immune Function Using Single Blood Drop
- Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
- Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
- Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions
- Cerebrospinal Fluid Test Predicts Dangerous Side Effect of Cancer Treatment
- New Test Measures Preterm Infant Immunity Using Only Two Drops of Blood
- Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer
- Novel Analytical Method Tracks Progression of Autoimmune Diseases
- 3D Bioprinted Gastric Cancer Model Uses Patient-Derived Tissue Fragments to Predict Drug Response
Channels
Clinical Chemistry
view channel
New Reference Measurement Procedure Standardizes Nucleic Acid Amplification Test Results
Nucleic acid amplification tests (NAATs) play a key role in diagnosing a wide range of infectious diseases. These tests are generally known for their high sensitivity and specificity, and they can be developed... Read more
Pen-Like Tool Quickly and Non-Invasively Detects Opioids from Skin
Opioid drugs such as fentanyl, morphine, and oxycodone are the primary substances associated with overdose cases in the United States. Standard drug screening procedures typically involve collecting blood,... Read moreMolecular Diagnostics
view channel
Genetic Test Could Predict Poor Outcomes in Lung Transplant Patients
Organ transplantation has dramatically transformed the management of patients suffering from organ failure. Yet, the immune system of the recipient often perceives the transplanted organ as a foreign entity,... Read more
Breakthrough Blood Test Enables Early Pancreatic Cancer Detection
Pancreatic cancer ranks as the fourth-leading cause of cancer-related deaths in the United States. At present, there are no molecular tools available for the early detection of this disease.... Read moreHematology
view channel
Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results
Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read moreMicrobiology
view channel
Credit Card-Sized Test Boosts TB Detection in HIV Hotspots
Current tuberculosis (TB) tests face major limitations when it comes to accurately diagnosing the infection in individuals living with HIV. HIV, a frequent co-infection with TB, complicates detection by... Read more
Fecal Metabolite Profiling Predicts Mortality in Critically Ill Patients
Critically ill patients in medical intensive care units (MICUs) often suffer from conditions such as acute respiratory distress syndrome (ARDS) or sepsis, which are linked to reduced diversity of gut microbiota... Read more
Portable Molecular POC System Rules Out UTIs in Just 35 Minutes
Urinary tract infections (UTIs) represent a massive burden on patients and healthcare systems. There are over 400 million UTI cases globally each year, of which around 90% are in women. Fast and accurate... Read more
POC Lateral Flow Test Detects Deadly Fungal Infection Faster Than Existing Techniques
Diagnosing mucormycosis—an aggressive and often deadly fungal infection—remains a major challenge due to the disease’s rapid progression and the lack of fast, accurate diagnostic tools. The problem became... Read morePathology
view channel
Cancer Chip Accurately Predicts Patient-Specific Chemotherapy Response
Esophageal adenocarcinoma (EAC), one of the two primary types of esophageal cancer, ranks as the sixth leading cause of cancer-related deaths worldwide and currently lacks effective targeted therapies.... Read more
Clinical AI Solution for Automatic Breast Cancer Grading Improves Diagnostic Accuracy
Labs that use traditional image analysis methods often suffer from bottlenecks and delays. By digitizing their pathology practices, labs can streamline their work, allowing them to take on larger caseloads... Read more
Saliva-Based Testing to Enable Early Detection of Cancer, Heart Disease or Parkinson’s
Saliva is one of the most accessible biological fluids, yet it remains underutilized in clinical practice. While saliva samples are used to perform genetic tests to determine, for example, paternity, the... Read moreTechnology
view channel
New POC Biosensing Technology Improves Detection of Molecular Biomarkers
Traditional diagnostic procedures in medicine typically involve sending a patient’s blood or tissue samples to clinical laboratories, where trained scientists perform testing and data interpretation.... Read more
Enhanced Lab Data Management and AI Critical to Labs of the Future, Finds Survey
Data plays a key role in the transformation of today’s digital laboratories, acting both as a key challenge and a catalyst for innovation, as revealed by a survey of over 150 scientists.... Read moreIndustry
view channel
AMP Releases Best Practice Recommendations to Guide Clinical Laboratories Offering HRD Testing
Homologous recombination deficiency (HRD) testing identifies tumors that are unable to effectively repair DNA damage through the homologous recombination repair pathway. This deficiency is often linked... Read more