LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Proteomics-Based Diagnostic Test Predicts Risk of Dying from Staphylococcus aureus Bacteremia

By LabMedica International staff writers
Posted on 14 Sep 2020
Print article
Image: Using advanced biochemical analysis of patient serum, researchers found signatures that help predict which patients are at highest risk of dying from S. aureus bacteremia, a blood infection (Photo courtesy of University of California, San Diego)
Image: Using advanced biochemical analysis of patient serum, researchers found signatures that help predict which patients are at highest risk of dying from S. aureus bacteremia, a blood infection (Photo courtesy of University of California, San Diego)
A diagnostic approach that integrates proteomic and metabolomic techniques enabled the identification of biomarkers that could predict which patients had the highest risk of dying from Staphylococcus aureus bacteremia.

Staphylococcus aureus bacteremia (SaB) causes significant disease in humans, carrying mortality rates of nearly 25%. The ability to rapidly predict SaB patient responses and guide personalized treatment regimens could reduce mortality.

In order to develop this predictive capability, investigators at the University of California, San Diego (USA) utilized mass spectrometry (MS) to analyze more than 10,000 proteins and metabolites present in more than 200 serum samples collected from the blood of patients with SaB.

Results revealed that by integrating proteomic and metabolomic techniques, the investigators could identify more than 10,000 features from serum samples collected upon clinical presentation. The MS results demonstrated a specific pattern of proteins with and without post-translational modifications that differed in the serum of patients who ultimately died of SaB compared to those who did not. The biomarkers most highly associated with death included lower levels of glycosylated fetuin A, unmodified fetuin B, and thyroxine.

With the area under the curve (AUC) higher than 0.95, the biomarkers identified in this study greatly exceeded the predictive capabilities of those previously reported, particularly when used in combination.

"This finding is a leap forward toward a point-of-care predictive tool for bacteremia risk," said senior author Dr. David Gonzalez, assistant professor of medicine at the University of California, San Diego. "It also opens up lots of new basic biological questions about how our immune systems respond to infections. If I wanted to learn all about you, I would just talk to you directly, not your second cousin. Same thing here - we can gain new and important information by directly "asking" the proteins, rather than their genes, and mass spectrometry is currently the best way to do that in an unbiased manner."

The study was published in the September 3, 2020, online edition of the journal Cell.

Related Links:
University of California, San Diego

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Binocular Laboratory LED Illuminated Microscope
HumaScope Classic LED
New
Fecal DNA Extraction Kit
QIAamp PowerFecal Pro DNA Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.