We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Lab Profiles Differentiate MIS-C From Severe Pediatric COVID-19

By LabMedica International staff writers
Posted on 19 Aug 2020
Print article
The V-Plex Pro-inflammatory Panel 1 Human Kit (Photo courtesy of Meso Scale Diagnostics).
The V-Plex Pro-inflammatory Panel 1 Human Kit (Photo courtesy of Meso Scale Diagnostics).
Initial reports from the Severe Acute Respiratory Coronavirus 2 (SARS-CoV-2) pandemic described children as being less susceptible to Coronavirus Disease 2019 (COVID-19) than adults. Subsequently, a severe and novel pediatric disorder termed Multisystem Inflammatory Syndrome in Children (MIS-C) emerged.

MIS-C is defined by clinically severe illness requiring hospitalization with fever, inflammatory marker elevation and multisystem organ dysfunction in the setting of recent proven or probable SARS-CoV-2 infection, and in the absence of an alternative likely explanation. Kawasaki disease (KD) is a medium vessel vasculitis that occurs almost exclusively in infants and children.

Pediatricians at the Children's Hospital of Philadelphia (Philadelphia, PA, USA) and colleagues prospectively screened and enrolled 20 hospitalized patients with evidence of SARS-CoV-2 infection. Patients were categorized as having MIS-C if they had fever, clinically severe illness with multisystem organ involvement (>2 of cardiac, renal, respiratory, hematologic, gastrointestinal, dermatologic or neurological), no alternative plausible diagnosis and positive SARS-CoV-2 infection by RT-PCR, serology, or COVID-19 exposure within the four weeks prior to the onset of symptoms.

Quantification of 10 pro-inflammatory cytokines was performed using V-Plex Pro-inflammatory Panel 1 Human Kits (Meso Scale Diagnostics, Rockville MD, USA). Cytokines assayed were IFN-γ, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, and TNF-α. Samples were analyzed in duplicates and assays were performed per manufacturer protocol and read and analyzed on a Meso Scale Diagnostics QuickPlex SQ120. Triplicates of plasma samples were assayed for soluble C5b-9 (sC5b-9) levels at two dilutions by using human C5b-9 ELISA set (BD Biosciences, San Jose CA, USA). Viral cycle thresholds (Cts) for SARS-CoV-2 were also measured.
The scientists found that the sum of IL-10 and TNF-α levels uniquely identified MIS-C from severe COVID-19 presentations (mean [95% CI]; Severe: 30.06 [9.54-50.6] versus MIS-C: 82.25 [32.5-132.0]). They noted that this profile for MIS-C, particularly marked elevations in IL-10, is distinct from previously reported cytokine profiles in KD, which tend to be associated with mild elevations of IL-1, IL-2, and IL-6. They also noted that Cts and burr cells on blood smears also differentiated between patients with severe COVID-19 and those with MIS-C. Patients with severe COVID-19 had low cycle thresholds, but those with MIS-C had high cycle thresholds (mean [95% CI]; Severe: 28.0 [26.8–29.1] versus MIS-C: 37.9 [34.8–41.0].

Aside from patient cytokine profiles, which require sophisticated laboratory equipment, the authors also found that simple peripheral blood smears could help distinguish the three conditions. Burr cells were absent in patients with mild COVID-19, but present in 40% of patients with severe disease. However, the authors noted that all patients with MIS-C had at least some burr cells present, with 60% of patients having 4+ burr cells. The study was published on July 30, 2020 in The Journal of Clinical Investigation.

Related Links:

Children's Hospital of Philadelphia
Meso Scale Diagnostics
BD Biosciences
New
Gold Member
Human Chorionic Gonadotropin Test
hCG Quantitative - R012
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Blood Gas and Chemistry Analysis System
Edan i500
New
Chlamydia Trachomatis Assay
Chlamydia Trachomatis IgG

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Molecular Diagnostics

view channel
Image: The advanced molecular test is designed to improve diagnosis of a genetic form of COPD (Photo courtesy of National Jewish Health)

Groundbreaking Molecular Diagnostic Test Accurately Diagnoses Major Genetic Cause of COPD

Chronic obstructive pulmonary disease (COPD) and Alpha-1 Antitrypsin Deficiency (AATD) are both conditions that can cause breathing difficulties, but they differ in their origins and inheritance.... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more