Liquid Biopsy Lung Cancer Screening Method Developed
|
By LabMedica International staff writers Posted on 09 Apr 2020 |

Image: Histological sections of a moderately well differentiated squamous cell carcinoma of the lung showing infiltrating sheets and tongues of malignant squamous cells with whorls of keratin (Photo courtesy of Department of Health Western Australia).
Genomic blood tests for cancer screening and early detection have become the focus of attention in the molecular diagnostic space, though most activity so far has been either toward pan-cancer screening tools, or in a few other specific tumor types like colorectal cancer, where tests hope to vie against colonoscopy and existing stool-based methods.
Radiologic screening of high-risk adults reduces lung-cancer-related mortality; however, a small minority of eligible individuals undergo such screening in the USA. The availability of blood-based tests could increase screening uptake. A novel circulating tumor DNA (ctDNA) detection assay has been developed that could help physicians screen individuals at risk for lung cancer.
A large team of scientists at Stanford University (Stanford, CA, USA) and their colleagues have described a method, called Lung-CLiP (lung cancer likelihood in plasma), involves targeted sequencing of cell-free DNA (cfDNA) from plasma and matched white blood cell DNA to assess copy number and single nucleotide variants, coupled with a machine learning model that estimates the probability that a cfDNA mutation is tumor-derived. The estimate is based on biological and technical features specific to each variant, such as background frequency, cfDNA fragment size, the gene affected, and the likelihood of clonal hematopoiesis.
The team first trained and optimized Lung-CLiP in an initial sample of 104 patients with early stage non-small cell lung cancer and 56 matched controls. When they then applied it to an independent set of validation samples (46 cases and 48 risk-matched controls), the test was able to discriminate early-stage lung cancer patients with sensitivity and specificity levels that the authors believe suggest a significant benefit to the clinic: depending on where they set their specificity threshold, the method could achieve 63% sensitivity for stage I tumors and up to 75% sensitivity in detecting patients with stage III disease. Setting their cutoff at 98% specificity, the investigators found that Lung-CLiP detected 41% of patients with stage I disease, 54% of patients with stage II disease and 67% of those with stage III disease.
Ash Alizadeh, MD, PhD, an associate professor of Oncology and a senior author of the study, said, “Lung-CLiP could help increase the rate of early detection. This would be analogous to how stool-based testing proposes to improve screening for colorectal cancers, especially in populations where adoption of colonoscopy is lower than currently recommended.” The study was published on March 25, 2020 in the journal Nature.
Related Links:
Stanford University
Radiologic screening of high-risk adults reduces lung-cancer-related mortality; however, a small minority of eligible individuals undergo such screening in the USA. The availability of blood-based tests could increase screening uptake. A novel circulating tumor DNA (ctDNA) detection assay has been developed that could help physicians screen individuals at risk for lung cancer.
A large team of scientists at Stanford University (Stanford, CA, USA) and their colleagues have described a method, called Lung-CLiP (lung cancer likelihood in plasma), involves targeted sequencing of cell-free DNA (cfDNA) from plasma and matched white blood cell DNA to assess copy number and single nucleotide variants, coupled with a machine learning model that estimates the probability that a cfDNA mutation is tumor-derived. The estimate is based on biological and technical features specific to each variant, such as background frequency, cfDNA fragment size, the gene affected, and the likelihood of clonal hematopoiesis.
The team first trained and optimized Lung-CLiP in an initial sample of 104 patients with early stage non-small cell lung cancer and 56 matched controls. When they then applied it to an independent set of validation samples (46 cases and 48 risk-matched controls), the test was able to discriminate early-stage lung cancer patients with sensitivity and specificity levels that the authors believe suggest a significant benefit to the clinic: depending on where they set their specificity threshold, the method could achieve 63% sensitivity for stage I tumors and up to 75% sensitivity in detecting patients with stage III disease. Setting their cutoff at 98% specificity, the investigators found that Lung-CLiP detected 41% of patients with stage I disease, 54% of patients with stage II disease and 67% of those with stage III disease.
Ash Alizadeh, MD, PhD, an associate professor of Oncology and a senior author of the study, said, “Lung-CLiP could help increase the rate of early detection. This would be analogous to how stool-based testing proposes to improve screening for colorectal cancers, especially in populations where adoption of colonoscopy is lower than currently recommended.” The study was published on March 25, 2020 in the journal Nature.
Related Links:
Stanford University
Latest Pathology News
- Simple Optical Microscopy Method Reveals Hidden Structures in Remarkable Detail
- Hydrogel-Based Technology Isolates Extracellular Vesicles for Early Disease Diagnosis
- AI Tool Improves Accuracy of Skin Cancer Detection
- Highly Sensitive Imaging Technique Detects Myelin Damage
- 3D Genome Mapping Tool to Improve Diagnosis and Treatment of Genetic Diseases
- New Molecular Analysis Tool to Improve Disease Diagnosis
- Tears Offer Noninvasive Alternative for Diagnosing Neurodegenerative Diseases
- AI-Powered Method Combines Blood Data to Accurately Measure Biological Age
- AI Tool Detects Cancer in Blood Samples In 10 Minutes
- AI Pathology Analysis System Delivers Comprehensive Cancer Diagnosis
- AI Improves Cervical Cancer Screening in Low-Resource Settings
- New Multi-Omics Tool Illuminates Cancer Progression
- New Technique Detects Genetic Mutations in Brain Tumors During Surgery within 25 Minutes
- New Imaging Tech to Improve Diagnosis and Treatment of Skin Cancers
- Serially Testing Brain Tumor Samples Reveals Treatment Response in Glioblastoma Patients
- High-Accuracy Tumor Detection Method Offers Real-Time Surgical Guidance
Channels
Clinical Chemistry
view channel
Mismatch Between Two Common Kidney Function Tests Indicates Serious Health Problems
Creatinine has long been the standard for measuring kidney filtration, while cystatin C — a protein produced by all human cells — has been recommended as a complementary marker because it is influenced... Read more
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read moreHematology
view channel
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more
Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read moreImmunology
view channel
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read more
Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
Immunotherapy has revolutionized cancer care by harnessing the immune system to fight tumors, yet predicting who will benefit remains a major challenge. Many patients undergo costly and taxing treatment... Read moreMicrobiology
view channel
15-Minute Blood Test Diagnoses Life-Threatening Infections in Children
Distinguishing minor childhood illnesses from potentially life-threatening infections such as sepsis or meningitis remains a major challenge in emergency care. Traditional tests can take hours, leaving... Read more
High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read morePathology
view channel
Simple Optical Microscopy Method Reveals Hidden Structures in Remarkable Detail
Understanding how microscopic fibers are organized in human tissues is key to revealing how organs function and how diseases disrupt them. However, these fiber networks have remained difficult to visualize... Read more
Hydrogel-Based Technology Isolates Extracellular Vesicles for Early Disease Diagnosis
Isolating extracellular vesicles (EVs) from biological fluids is essential for early diagnosis, therapeutic development, and precision medicine. However, traditional EV-isolation methods rely on ultra... Read moreTechnology
view channel
AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
Early detection of head and neck cancer remains difficult because the disease produces few or no symptoms in its earliest stages, and lesions often lie deep within the head or neck, where biopsy or endoscopy... Read more
AI-Powered Biosensor Technology to Enable Breath Test for Lung Cancer Detection
Detecting lung cancer early remains one of the biggest challenges in oncology, largely because current tools are invasive, expensive, or unable to identify the disease in its earliest phases.... Read moreIndustry
view channel
Roche and Freenome Collaborate to Develop Cancer Screening Tests
Roche (Basel, Switzerland) and Freenome (Brisbane, CA, USA have entered into a strategic collaboration to commercialize Freenome's cancer screening technology in international markets.... Read more








