The COVID-19 Coronavirus Remains Viable for Hours or Days on Solid Surfaces
By LabMedica International staff writers Posted on 30 Mar 2020 |
![Image: This transmission electron microscope image shows SARS-CoV-2, the virus that causes COVID-19, isolated from a patient in the United States (Photo courtesy of [U.S.] National Institute of Allergy and Infectious Diseases) Image: This transmission electron microscope image shows SARS-CoV-2, the virus that causes COVID-19, isolated from a patient in the United States (Photo courtesy of [U.S.] National Institute of Allergy and Infectious Diseases)](https://globetechcdn.com/mobile_labmedica/images/stories/articles/article_images/2020-03-30/GMS-050B.jpg)
Image: This transmission electron microscope image shows SARS-CoV-2, the virus that causes COVID-19, isolated from a patient in the United States (Photo courtesy of [U.S.] National Institute of Allergy and Infectious Diseases)
A recently published paper sheds light on how coronavirus spreads through the air and how long it remains viable on various solid surfaces.
A novel coronavirus of zoonotic origin, SARS-CoV-2 (2019-nCoV) was first identified in patients with acute respiratory disease (COVID-19). This virus is genetically similar to SARS coronavirus and bat SARS-like coronaviruses. The outbreak was initially detected in Wuhan, a major city of China, but has subsequently exploded into a pandemic, which is raging in most of the countries of the world. At this time more than 425,000 cases of the disease have been confirmed with thousands of fatalities. Signs of infection are highly non-specific and these include respiratory symptoms, fever, cough, dyspnea, and viral pneumonia. The elderly and those with chronic diseases seem to suffer a more severe disease than does the younger, healthier population.
Many questions remain unanswered regarding how coronavirus spreads. To answer some of them, investigators at the University of California, Los Angeles (USA), the [U.S.] National Institute of Allergy and Infectious Diseases (Bethesda, MD, USA), the [U.S.] Centers for Disease Control and Prevention (Atlanta, GA, USA), and Princeton University (Princeton, NJ, USA) analyzed the aerosol and surface stability of SARS-CoV-2 and compared it with SARS-CoV-1, the most closely related human coronavirus.
For the study, aerosols similar to those observed in samples obtained from the upper and lower respiratory tract in humans, containing SARS-CoV-2 or SARS-CoV-1 were generated with the use of a three-jet Collison nebulizer. In addition, the viability of the viruses was determined in four environmental conditions (plastic, stainless steel, copper, and cardboard).
Results revealed that SARS-CoV-2 remained viable in aerosols throughout the duration of the three hour experiment, but with a small reduction in infectious titer. This reduction was similar to that observed with SARS-CoV-1.
SARS-CoV-2 was more stable on plastic and stainless steel than on copper and cardboard, and viable virus was detected up to 72 hours after application to these surfaces, although the virus titer was greatly reduced. Significant reduction in virus titers were noted after 72 hours on plastic, after 48 hours on stainless steel, 24 hours on cardboard, and only four hours on copper. The stability kinetics of SARS-CoV-1 were similar. This suggests that differences in the epidemiologic characteristics of these viruses probably arise from other factors, including high viral loads in the upper respiratory tract and the potential for persons infected with SARS-CoV-2 to shed and transmit the virus while asymptomatic.
While the results indicated that viable viruses could be detected for hours or days on some surfaces, it was not shown whether these viruses were still capable of causing the disease.
Contributing author Dr. James Lloyd-Smith, professor of ecology and evolutionary biology at the University of California, Los Angeles, said, "This virus is quite transmissible through relatively casual contact, making this pathogen very hard to contain. If you are touching items that someone else has recently handled, be aware they could be contaminated and wash your hands. The biology and epidemiology of the virus make infection extremely difficult to detect in its early stages because the majority of cases show no symptoms for five days or longer after exposure. Many people will not have developed symptoms yet."
The report appeared in the March 17, 2020, online edition of the journal New England Journal of Medicine.
Related Links:
University of California, Los Angeles
[U.S.] National Institute of Allergy and Infectious Diseases
Centers for Disease Control and Prevention
Princeton University
A novel coronavirus of zoonotic origin, SARS-CoV-2 (2019-nCoV) was first identified in patients with acute respiratory disease (COVID-19). This virus is genetically similar to SARS coronavirus and bat SARS-like coronaviruses. The outbreak was initially detected in Wuhan, a major city of China, but has subsequently exploded into a pandemic, which is raging in most of the countries of the world. At this time more than 425,000 cases of the disease have been confirmed with thousands of fatalities. Signs of infection are highly non-specific and these include respiratory symptoms, fever, cough, dyspnea, and viral pneumonia. The elderly and those with chronic diseases seem to suffer a more severe disease than does the younger, healthier population.
Many questions remain unanswered regarding how coronavirus spreads. To answer some of them, investigators at the University of California, Los Angeles (USA), the [U.S.] National Institute of Allergy and Infectious Diseases (Bethesda, MD, USA), the [U.S.] Centers for Disease Control and Prevention (Atlanta, GA, USA), and Princeton University (Princeton, NJ, USA) analyzed the aerosol and surface stability of SARS-CoV-2 and compared it with SARS-CoV-1, the most closely related human coronavirus.
For the study, aerosols similar to those observed in samples obtained from the upper and lower respiratory tract in humans, containing SARS-CoV-2 or SARS-CoV-1 were generated with the use of a three-jet Collison nebulizer. In addition, the viability of the viruses was determined in four environmental conditions (plastic, stainless steel, copper, and cardboard).
Results revealed that SARS-CoV-2 remained viable in aerosols throughout the duration of the three hour experiment, but with a small reduction in infectious titer. This reduction was similar to that observed with SARS-CoV-1.
SARS-CoV-2 was more stable on plastic and stainless steel than on copper and cardboard, and viable virus was detected up to 72 hours after application to these surfaces, although the virus titer was greatly reduced. Significant reduction in virus titers were noted after 72 hours on plastic, after 48 hours on stainless steel, 24 hours on cardboard, and only four hours on copper. The stability kinetics of SARS-CoV-1 were similar. This suggests that differences in the epidemiologic characteristics of these viruses probably arise from other factors, including high viral loads in the upper respiratory tract and the potential for persons infected with SARS-CoV-2 to shed and transmit the virus while asymptomatic.
While the results indicated that viable viruses could be detected for hours or days on some surfaces, it was not shown whether these viruses were still capable of causing the disease.
Contributing author Dr. James Lloyd-Smith, professor of ecology and evolutionary biology at the University of California, Los Angeles, said, "This virus is quite transmissible through relatively casual contact, making this pathogen very hard to contain. If you are touching items that someone else has recently handled, be aware they could be contaminated and wash your hands. The biology and epidemiology of the virus make infection extremely difficult to detect in its early stages because the majority of cases show no symptoms for five days or longer after exposure. Many people will not have developed symptoms yet."
The report appeared in the March 17, 2020, online edition of the journal New England Journal of Medicine.
Related Links:
University of California, Los Angeles
[U.S.] National Institute of Allergy and Infectious Diseases
Centers for Disease Control and Prevention
Princeton University
Latest Microbiology News
- Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
- Innovative ID/AST System to Help Diagnose Infectious Diseases and Combat AMR
- Gastrointestinal Panel Delivers Rapid Detection of Five Common Bacterial Pathogens for Outpatient Use
- Rapid PCR Testing in ICU Improves Antibiotic Stewardship
- Unique Genetic Signature Predicts Drug Resistance in Bacteria
- Unique Barcoding System Tracks Pneumonia-Causing Bacteria as They Infect Blood Stream
- Rapid Sepsis Diagnostic Test Demonstrates Improved Patient Care and Cost Savings in Hospital Application
- Rapid Diagnostic System to Detect Neonatal Sepsis Within Hours
- Novel Test to Diagnose Bacterial Pneumonia Directly from Whole Blood
- Interferon-γ Release Assay Effective in Patients with COPD Complicated with Pulmonary Tuberculosis
- New Point of Care Tests to Help Reduce Overuse of Antibiotics
- 30-Minute Sepsis Test Differentiates Bacterial Infections, Viral Infections, and Noninfectious Disease
- CRISPR-TB Blood Test to Enable Early Disease Diagnosis and Public Screening
- Syndromic Panel Provides Fast Answers for Outpatient Diagnosis of Gastrointestinal Conditions
- Culture-Free Platform Rapidly Identifies Blood Stream Infections
- POC PCR Test Rapidly Detects Bacterial Meningitis Directly at Point of Sample Collection
Channels
Clinical Chemistry
view channel
Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
Current sensors can measure various health indicators, such as blood glucose levels, in the body. However, there is a need to develop more accurate and sensitive sensor materials that can detect lower... Read more
Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
In regions where access to clinics for routine blood tests presents financial and logistical obstacles, HIV patients are increasingly able to collect and send a drop of blood using paper-based devices... Read moreMolecular Diagnostics
view channel
D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism
Pulmonary embolism (PE) is a commonly suspected condition in emergency departments (EDs) and can be life-threatening if not diagnosed correctly. Achieving an accurate diagnosis is vital for providing effective... Read more
New Biomarkers to Improve Early Detection and Monitoring of Kidney Injury
Drug-induced kidney injury, also known as nephrotoxicity, is a prevalent issue in clinical practice, occurring when specific medications at certain doses cause damage to the kidneys. Nephrotoxicity can... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions
In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read moreCerebrospinal Fluid Test Predicts Dangerous Side Effect of Cancer Treatment
In recent years, cancer immunotherapy has emerged as a promising approach where the patient's immune system is harnessed to fight cancer. One form of immunotherapy, called CAR-T-cell therapy, involves... Read more
New Test Measures Preterm Infant Immunity Using Only Two Drops of Blood
Preterm infants are particularly vulnerable due to their organs still undergoing development, which can lead to difficulties in breathing, eating, and regulating body temperature. This is especially true... Read more
Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer
Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read morePathology
view channel
AI Model Predicts Patient Response to Bladder Cancer Treatment
Each year in the United States, around 81,000 new cases of bladder cancer are diagnosed, leading to approximately 17,000 deaths annually. Muscle-invasive bladder cancer (MIBC) is a severe form of bladder... Read more
New Laser-Based Method to Accelerate Cancer Diagnosis
Researchers have developed a method to improve cancer diagnostics and other diseases. Collagen, a key structural protein, plays various roles in cell activity. A novel multidisciplinary study published... Read more
New AI Model Predicts Gene Variants’ Effects on Specific Diseases
In recent years, artificial intelligence (AI) has greatly enhanced our ability to identify a vast number of genetic variants in increasingly larger populations. However, up to half of these variants are... Read more
Powerful AI Tool Diagnoses Coeliac Disease from Biopsy Images with Over 97% Accuracy
Coeliac disease is an autoimmune disorder triggered by the consumption of gluten, causing symptoms such as stomach cramps, diarrhea, skin rashes, weight loss, fatigue, and anemia. Due to the wide variation... Read moreTechnology
view channel
Smartphones Could Diagnose Diseases Using Infrared Scans
Rapid advancements in technology may soon make it possible for individuals to bypass invasive medical procedures by simply uploading a screenshot of their lab results from their phone directly to their doctor.... Read more
Novel Sensor Technology to Enable Early Diagnoses of Metabolic and Cardiovascular Disorders
Metabolites are critical compounds that fuel life's essential functions, playing a key role in producing energy, regulating cellular activities, and maintaining the balance of bodily systems.... Read more
3D Printing Breakthrough Enables Large Scale Development of Tiny Microfluidic Devices
Microfluidic devices are diagnostic systems capable of analyzing small volumes of materials with precision and speed. These devices are used in a variety of applications, including cancer cell analysis,... Read moreIndustry
view channel
Tecan Acquires ELISA Immunoassay Assets from Revvity's Cisbio Bioassays
Tecan Group (Männedorf, Switzerland) has entered into an agreement to acquire certain assets relating to key ELISA immunoassay products from Cisbio Bioassays SAS (Codolet, France), a subsidiary of the... Read more