Microbiome Composition Predicts Outcome Among Stem Cell Transplant Patients
By LabMedica International staff writers Posted on 12 Mar 2020 |

Image: The composition of patients` microbiomes can predict their clinical outcomes when undergoing stem cell transplants (Photo courtesy of European Leukemia Net).
Allogeneic hematopoietic stem cell transplants are common among patients with blood cancers, and while they may cure the disease, such transplants can also lead to complications such as graft-versus-host disease and infections.
The intestinal microbiota play a role in host physiology. Patients undergoing allogeneic hematopoietic-cell transplantation have microbiota disruption that is characterized by expansions of potentially pathogenic bacteria and loss of alpha diversity which is a variable that reflects the number of unique bacterial taxa present and their relative frequencies.
A large team of international scientists led by the Memorial Sloan-Kettering Cancer Center group (MSKCC, New York, NY, USA) prospectively collected a median four stool samples from 1,362 patients from four centers undergoing allogeneic hematopoietic stem cell transplants. Most patients were being treated for acute leukemia, though others had myeloma or aplastic anemia. The team used 16S ribosomal RNA gene sequencing, and they characterized patients' gut microbiomes before and after transplantation. Patients at all four centers exhibited a loss of microbial diversity during the transplant time frame.
The investigators divided patients from MSKCC into high and low diversity groups; they noticed that higher gut microbiome diversity was associated with a lower risk of death, including transplant-related death. This association held even after they accounted for patients' age, how intense patients' pre-transplant conditioning regime was, and graft source. Similarly, higher gut microbiome diversity was associated with a lower risk of death among patients from the three other medical centers combined.
Lower-diversity microbiomes were often marked by an overabundance of certain bacteria. In particular, there was an enrichment of Enterococcus, Klebsiella, Escherichia, Staphylococcus, and Streptococcus among these samples. The scientists noted that higher levels of Enterococcus has previously been linked to an increased risk of vancomycin-resistant enterococcal bacteremia and graft-versus-host disease. But even before undergoing the transplant, patients had less diverse gut microbiomes than healthy individuals. The initial 600 fecal samples the team collected from patients at all four centers had less diversity than samples from healthy volunteers, indicating that the patients arrive for treatment with microbiomes that already differed from those of healthy individuals.
The authors concluded that their study defines opportunities for rational interventions to restore integrity to the intestinal microbiota, such as with fecal microbiota replacement or other strategies which could also be evaluated in clinical settings beyond allogeneic hematopoietic-cell transplantation. The study was published on February 27, 2020 in the journal The New England Journal of Medicine.
Related Links:
Memorial Sloan-Kettering Cancer Center
The intestinal microbiota play a role in host physiology. Patients undergoing allogeneic hematopoietic-cell transplantation have microbiota disruption that is characterized by expansions of potentially pathogenic bacteria and loss of alpha diversity which is a variable that reflects the number of unique bacterial taxa present and their relative frequencies.
A large team of international scientists led by the Memorial Sloan-Kettering Cancer Center group (MSKCC, New York, NY, USA) prospectively collected a median four stool samples from 1,362 patients from four centers undergoing allogeneic hematopoietic stem cell transplants. Most patients were being treated for acute leukemia, though others had myeloma or aplastic anemia. The team used 16S ribosomal RNA gene sequencing, and they characterized patients' gut microbiomes before and after transplantation. Patients at all four centers exhibited a loss of microbial diversity during the transplant time frame.
The investigators divided patients from MSKCC into high and low diversity groups; they noticed that higher gut microbiome diversity was associated with a lower risk of death, including transplant-related death. This association held even after they accounted for patients' age, how intense patients' pre-transplant conditioning regime was, and graft source. Similarly, higher gut microbiome diversity was associated with a lower risk of death among patients from the three other medical centers combined.
Lower-diversity microbiomes were often marked by an overabundance of certain bacteria. In particular, there was an enrichment of Enterococcus, Klebsiella, Escherichia, Staphylococcus, and Streptococcus among these samples. The scientists noted that higher levels of Enterococcus has previously been linked to an increased risk of vancomycin-resistant enterococcal bacteremia and graft-versus-host disease. But even before undergoing the transplant, patients had less diverse gut microbiomes than healthy individuals. The initial 600 fecal samples the team collected from patients at all four centers had less diversity than samples from healthy volunteers, indicating that the patients arrive for treatment with microbiomes that already differed from those of healthy individuals.
The authors concluded that their study defines opportunities for rational interventions to restore integrity to the intestinal microbiota, such as with fecal microbiota replacement or other strategies which could also be evaluated in clinical settings beyond allogeneic hematopoietic-cell transplantation. The study was published on February 27, 2020 in the journal The New England Journal of Medicine.
Related Links:
Memorial Sloan-Kettering Cancer Center
Latest Microbiology News
- Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
- New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
- Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
- Innovative ID/AST System to Help Diagnose Infectious Diseases and Combat AMR
- Gastrointestinal Panel Delivers Rapid Detection of Five Common Bacterial Pathogens for Outpatient Use
- Rapid PCR Testing in ICU Improves Antibiotic Stewardship
- Unique Genetic Signature Predicts Drug Resistance in Bacteria
- Unique Barcoding System Tracks Pneumonia-Causing Bacteria as They Infect Blood Stream
- Rapid Sepsis Diagnostic Test Demonstrates Improved Patient Care and Cost Savings in Hospital Application
- Rapid Diagnostic System to Detect Neonatal Sepsis Within Hours
- Novel Test to Diagnose Bacterial Pneumonia Directly from Whole Blood
- Interferon-γ Release Assay Effective in Patients with COPD Complicated with Pulmonary Tuberculosis
- New Point of Care Tests to Help Reduce Overuse of Antibiotics
- 30-Minute Sepsis Test Differentiates Bacterial Infections, Viral Infections, and Noninfectious Disease
- CRISPR-TB Blood Test to Enable Early Disease Diagnosis and Public Screening
- Syndromic Panel Provides Fast Answers for Outpatient Diagnosis of Gastrointestinal Conditions
Channels
Clinical Chemistry
view channel
‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreMolecular Diagnostics
view channel
Blood Test Could Predict Relapse of Autoimmune Blood Vessel Disease
Neutrophils, once believed to be uniform in nature, have been discovered to exhibit significant diversity. These immune cells, which play a crucial role in fighting infections, are also implicated in autoimmune... Read more
First-of-its-Kind Blood Test Detects Trauma-Related Diseases
In today’s fast-paced world, stress and trauma have unfortunately become common experiences for many individuals. Continuous exposure to stress hormones can confuse the immune system, causing it to misinterpret... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation
Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more
World’s First AI Model for Thyroid Cancer Diagnosis Achieves Over 90% Accuracy
Thyroid cancer is one of the most common cancers worldwide, and its precise management typically relies on two primary systems: (1) the 8th edition of the American Joint Committee on Cancer (AJCC) or ... Read more
Breakthrough Diagnostic Approach to Significantly Improve TB Detection
Tuberculosis (TB) remains the deadliest infectious disease globally, with 10.8 million new cases and 1.25 million deaths reported in 2023. Early detection through effective screening is crucial in identifying... Read more
Rapid, Ultra-Sensitive, PCR-Free Detection Method Makes Genetic Analysis More Accessible
Genetic testing has been an important method for detecting infectious diseases, diagnosing early-stage cancer, ensuring food safety, and analyzing environmental DNA. For a long time, polymerase chain reaction... Read moreTechnology
view channel
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more