Lung Adenocarcinoma Genomic Features Differ in East Asians, Europeans
By LabMedica International staff writers Posted on 18 Feb 2020 |

Image: Histopathology of Lung adenocarcinoma (Photo courtesy of Nikon).
Lung adenocarcinoma is a subtype of non-small cell lung cancer (NSCLC). Lung adenocarcinoma is categorized as such by how the cancer cells look under a microscope. Lung adenocarcinoma starts in glandular cells, which secrete substances such as mucus, and tends to develop in smaller airways, such as alveoli.
Lung cancer is the world’s leading cause of cancer death and shows strong ancestry disparities. Lung adenocarcinoma is a common cancer and leads to more than one million deaths each year. A new analysis has found that lung tumors isolated from patients of East Asian ancestry have a less complex genomic architecture than tumors from European patients.
Scientists from the Genome Institute of Singapore (A*STAR, Singapore) and their associates characterized the genomic landscape of lung cancer among East Asians, generating a genomic and transcriptomic dataset encompassing more than 300 lung cancer patients of Chinese ancestry. They sequenced the exomes and transcriptomes of 213 Chinese lung adenocarcinoma patients from Singapore and combined that dataset with previously published whole-exome sequencing data on 92 Chinese patients from another cohort. By comparing the genomic and transcriptomic data from these 305 individuals to that of 249 lung adenocarcinoma patients of European ancestry from The Cancer Genome Atlas, they uncovered differences in tumor mutational burden and driver genes between the groups.
The team reported that overall, East Asian patients' tumors had fewer genomic alterations, with a median tumor mutational burden of 2.04 per Mb, as compared to a median 5.08 per Mb among European patients. While this burden was influenced by patients' smoking status, even among smokers, East Asian patients had a lower median tumor mutational burden than European patients. At the same time, the number and nature of driver mutations differed between tumors from East Asian and European patients. In East Asian patients, alterations affecting the EGFR, TP53, and KRAS genes were the most common driver mutations and nonsmokers had an average 2.08 driver mutations, as compared to an average 2.65 driver mutations among European nonsmokers. Additionally, East Asian patients had fewer copy number variations.
By analyzing the transcriptomic profiles of the tumor samples, the scientists teased out three different lung cancer sub-clusters. Two of these were similar to the terminal respiratory unit (TRU) and proximal inflammatory sub-clusters previously found in European patients, but the third was specific to East Asians. That sub-cluster, dubbed TRU-I, was marked by the upregulation of inflammation-associated genes and increased immune infiltration. This phenotype could help identify patients who might be more likely to benefit from immunotherapy or immune checkpoint blockade treatment.
While they found that patients' clinical features could predict their outcomes, they noted that genomic features could also predict patient survival. These predictions were more accurate for East Asian than European patients, which they attributed to their more stable tumor genomes. The authors concluded that their study elucidated a comprehensive genomic landscape of East Asian ancestry lung adenocarcinomas and highlighted important ancestry differences between the two cohorts. The study was published on February 3, 2020 in the Nature Genetics.
Related Links:
Genome Institute of Singapore
Lung cancer is the world’s leading cause of cancer death and shows strong ancestry disparities. Lung adenocarcinoma is a common cancer and leads to more than one million deaths each year. A new analysis has found that lung tumors isolated from patients of East Asian ancestry have a less complex genomic architecture than tumors from European patients.
Scientists from the Genome Institute of Singapore (A*STAR, Singapore) and their associates characterized the genomic landscape of lung cancer among East Asians, generating a genomic and transcriptomic dataset encompassing more than 300 lung cancer patients of Chinese ancestry. They sequenced the exomes and transcriptomes of 213 Chinese lung adenocarcinoma patients from Singapore and combined that dataset with previously published whole-exome sequencing data on 92 Chinese patients from another cohort. By comparing the genomic and transcriptomic data from these 305 individuals to that of 249 lung adenocarcinoma patients of European ancestry from The Cancer Genome Atlas, they uncovered differences in tumor mutational burden and driver genes between the groups.
The team reported that overall, East Asian patients' tumors had fewer genomic alterations, with a median tumor mutational burden of 2.04 per Mb, as compared to a median 5.08 per Mb among European patients. While this burden was influenced by patients' smoking status, even among smokers, East Asian patients had a lower median tumor mutational burden than European patients. At the same time, the number and nature of driver mutations differed between tumors from East Asian and European patients. In East Asian patients, alterations affecting the EGFR, TP53, and KRAS genes were the most common driver mutations and nonsmokers had an average 2.08 driver mutations, as compared to an average 2.65 driver mutations among European nonsmokers. Additionally, East Asian patients had fewer copy number variations.
By analyzing the transcriptomic profiles of the tumor samples, the scientists teased out three different lung cancer sub-clusters. Two of these were similar to the terminal respiratory unit (TRU) and proximal inflammatory sub-clusters previously found in European patients, but the third was specific to East Asians. That sub-cluster, dubbed TRU-I, was marked by the upregulation of inflammation-associated genes and increased immune infiltration. This phenotype could help identify patients who might be more likely to benefit from immunotherapy or immune checkpoint blockade treatment.
While they found that patients' clinical features could predict their outcomes, they noted that genomic features could also predict patient survival. These predictions were more accurate for East Asian than European patients, which they attributed to their more stable tumor genomes. The authors concluded that their study elucidated a comprehensive genomic landscape of East Asian ancestry lung adenocarcinomas and highlighted important ancestry differences between the two cohorts. The study was published on February 3, 2020 in the Nature Genetics.
Related Links:
Genome Institute of Singapore
Latest Pathology News
- AI Accurately Predicts Genetic Mutations from Routine Pathology Slides for Faster Cancer Care
- AI Tool Enhances Interpretation of Tissue Samples by Pathologists
- AI-Assisted Technique Tracks Cells Damaged from Injury, Aging and Disease
- Novel Fluorescent Probe Shows Potential in Precision Cancer Diagnostics and Fluorescence-Guided Surgery
- New Lab Model to Help Find Treatments for Aggressive Blood Cancer
- AI-Supported Microscopy Improves Detection of Intestinal Parasite Infections
- AI Performs Virtual Tissue Staining at Super-Resolution
- AI-Driven Preliminary Testing for Pancreatic Cancer Enhances Prognosis
- Cancer Chip Accurately Predicts Patient-Specific Chemotherapy Response
- Clinical AI Solution for Automatic Breast Cancer Grading Improves Diagnostic Accuracy
- Saliva-Based Testing to Enable Early Detection of Cancer, Heart Disease or Parkinson’s
- Advances in Monkeypox Virus Diagnostics to Improve Management of Future Outbreaks
- Nanoneedle-Studded Patch Could Eliminate Painful and Invasive Biopsies
- AI Cancer Classification Tool to Drive Targeted Treatments
- AI-Powered Imaging Enables Faster Lung Disease Treatment
- New Laboratory Method Speeds Diagnosis of Rare Genetic Disease
Channels
Clinical Chemistry
view channel
New Clinical Chemistry Analyzer Designed to Meet Growing Demands of Modern Labs
A new clinical chemistry analyzer is designed to provide outstanding performance and maximum efficiency, without compromising affordability, to meet the growing demands of modern laboratories.... Read more
New Reference Measurement Procedure Standardizes Nucleic Acid Amplification Test Results
Nucleic acid amplification tests (NAATs) play a key role in diagnosing a wide range of infectious diseases. These tests are generally known for their high sensitivity and specificity, and they can be developed... Read moreHematology
view channel
Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results
Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read moreImmunology
view channel
Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer
Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more
Groundbreaking Lateral Flow Test Quantifies Nucleosomes in Whole Venous Blood in Minutes
Diagnosing immune disruptions quickly and accurately is crucial in conditions such as sepsis, where timely intervention is critical for patient survival. Traditional testing methods can be slow, expensive,... Read moreMicrobiology
view channel
Viral Load Tests Can Help Predict Mpox Severity
Mpox is a viral infection that causes flu-like symptoms and a characteristic rash, which evolves significantly over time and varies between patients. The disease spreads mainly through direct contact with... Read more
Gut Microbiota Analysis Enables Early and Non-Invasive Detection of Gestational Diabetes
Gestational diabetes mellitus is a common metabolic disorder marked by abnormal glucose metabolism during pregnancy, typically emerging in the mid to late stages. It significantly heightens the risk of... Read morePathology
view channel
AI Accurately Predicts Genetic Mutations from Routine Pathology Slides for Faster Cancer Care
Current cancer treatment decisions are often guided by genetic testing, which can be expensive, time-consuming, and not always available at leading hospitals. For patients with lung adenocarcinoma, a critical... Read more
AI Tool Enhances Interpretation of Tissue Samples by Pathologists
Malignant melanoma, a form of skin cancer, is diagnosed by pathologists based on tissue samples. A crucial aspect of this process is estimating the presence of tumor-infiltrating lymphocytes (TILs), immune... Read more
AI-Assisted Technique Tracks Cells Damaged from Injury, Aging and Disease
Senescent cells, which stop growing and reproducing due to injury, aging, or disease, play a critical role in wound repair and aging-related diseases like cancer and heart disease. These cells, however,... Read more
Novel Fluorescent Probe Shows Potential in Precision Cancer Diagnostics and Fluorescence-Guided Surgery
Hepatocellular carcinoma (HCC), a common type of liver cancer, is difficult to diagnose early and accurately due to the limitations of current diagnostic methods. Glycans, carbohydrate structures present... Read moreTechnology
view channel
Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation
Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Ultra-Sensitive Biosensor Based on Light and AI Enables Early Cancer Diagnosis
Cancer diagnosis is often delayed due to the difficulty in detecting early-stage cancer markers. In particular, the concentration of methylated DNA in the bloodstream during the early stages of cancer... Read moreIndustry
view channel
2025 COMPAMED Innovation Forum Highlights Pioneering Work in Cancer Diagnostics
Cancer cases are among the biggest challenges faced by global healthcare systems. The incidence has risen in recent decades, not least on account of demographic change and escalating risk factors.... Read more
Quanterix Completes Acquisition of Akoya Biosciences
Quanterix Corporation (Billerica, MA, USA) has completed its previously announced acquisition of Akoya Biosciences (Marlborough, MA, USA), paving the way for the creation of the first integrated solution... Read more
Lunit and Microsoft Collaborate to Advance AI-Driven Cancer Diagnosis
Lunit (Seoul, South Korea) and Microsoft (Redmond, WA, USA) have entered into a collaboration to accelerate the delivery of artificial intelligence (AI)-powered healthcare solutions. In conjunction with... Read more