Detection of Pathogenic Microorganisms in Semen by Sequencing Sperm RNA
By LabMedica International staff writers Posted on 11 Feb 2020 |
Image: Human sperm stained for semen quality testing in the clinical laboratory (Photo courtesy of Wikimedia Commons)
Advanced sequencing of sperm RNA was used to detect genetic material from microorganisms that were present as contaminants in the associated semen.
The current approach for analysis of the male reproductive tract microbiome relies on identification of micoroorganisms grown from cultures. This approach is of limited value, since the majority of pathogens cannot be cultured.
Investigators at Wayne State University (Detroit, MI, USA) and colleagues at the CReATe Fertility Center (Toronto, Canada) and the University of Massachusetts Amherst (USA) conducted a study designed to assess the capacity of human sperm RNA-seq (RNA sequencing) data to gauge the diversity of the microbiome present within the semen.
For this study, the investigators collected 85 semen samples, isolated the sperm RNA, and analyzed the material using RNA sequencing technology. Microbial composition was determined by aligning sequencing reads not mapped to the human genome to the [U.S.] National Center for Biotechnology Information (NCBI) RefSeq bacterial, viral, and archaeal genomes.
Microbial composition within each sample was characterized as a function of microbial associated RNAs. Results revealed that bacteria known to be associated with the male reproductive tract were present at similar levels in all samples representing 11 genera from four phyla with one exception, an outlier. The outlier sample exhibited a dramatic increase in Streptococcus, represented by two operational taxonomic units, S. agalactiae and S. dysgalactiae. These bacteria cause neonatal infection during pregnancy and post-delivery and are linked to significant mortality rates in premature births.
"We show that non-targeted sequencing of human sperm RNA has the potential to provide a profile of micro-organisms (bacteria, viruses, archaea)," said Dr. Stephen Krawetz, professor of fetal therapy and diagnosis at Wayne State University. "This information was recovered from the data typically cast aside as part of routine nucleic acid sequencing. The enhanced sensitivity and specificity of the sequencing technology as compared to current approaches may prove useful as a diagnostic tool for microbial status as part of the routine assessment as we move toward personalized care. Given the recent increase and severity of Streptococcus (agalactiae) infection, as well as others in adults, neonates, and newborns, non-targeted human sperm RNA sequencing data may, in addition to providing fertility status, prove useful as a diagnostic for microbial status."
The RNA sequencing study was published in the January 4, 2020, online edition of the Journal of Assisted Reproduction and Genetics.
Related Links:
Wayne State University
CReATe Fertility Center
University of Massachusetts Amherst
The current approach for analysis of the male reproductive tract microbiome relies on identification of micoroorganisms grown from cultures. This approach is of limited value, since the majority of pathogens cannot be cultured.
Investigators at Wayne State University (Detroit, MI, USA) and colleagues at the CReATe Fertility Center (Toronto, Canada) and the University of Massachusetts Amherst (USA) conducted a study designed to assess the capacity of human sperm RNA-seq (RNA sequencing) data to gauge the diversity of the microbiome present within the semen.
For this study, the investigators collected 85 semen samples, isolated the sperm RNA, and analyzed the material using RNA sequencing technology. Microbial composition was determined by aligning sequencing reads not mapped to the human genome to the [U.S.] National Center for Biotechnology Information (NCBI) RefSeq bacterial, viral, and archaeal genomes.
Microbial composition within each sample was characterized as a function of microbial associated RNAs. Results revealed that bacteria known to be associated with the male reproductive tract were present at similar levels in all samples representing 11 genera from four phyla with one exception, an outlier. The outlier sample exhibited a dramatic increase in Streptococcus, represented by two operational taxonomic units, S. agalactiae and S. dysgalactiae. These bacteria cause neonatal infection during pregnancy and post-delivery and are linked to significant mortality rates in premature births.
"We show that non-targeted sequencing of human sperm RNA has the potential to provide a profile of micro-organisms (bacteria, viruses, archaea)," said Dr. Stephen Krawetz, professor of fetal therapy and diagnosis at Wayne State University. "This information was recovered from the data typically cast aside as part of routine nucleic acid sequencing. The enhanced sensitivity and specificity of the sequencing technology as compared to current approaches may prove useful as a diagnostic tool for microbial status as part of the routine assessment as we move toward personalized care. Given the recent increase and severity of Streptococcus (agalactiae) infection, as well as others in adults, neonates, and newborns, non-targeted human sperm RNA sequencing data may, in addition to providing fertility status, prove useful as a diagnostic for microbial status."
The RNA sequencing study was published in the January 4, 2020, online edition of the Journal of Assisted Reproduction and Genetics.
Related Links:
Wayne State University
CReATe Fertility Center
University of Massachusetts Amherst
Latest Microbiology News
- High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes
- Innovative Diagnostic Approach for Bacterial Infections to Enable Faster and Effective Treatment
- Non-Invasive Stool Test to Diagnose Endometriosis and Help Reduce Disease Progression
- Automated Positive Blood Culture Sample Preparation Platform Designed to Fight Against Sepsis and AMR
- Revolutionary Molecular Culture ID Technology to Transform Bacterial Diagnostics
- New Digital PCR Assays Enable Accurate and Sensitive Detection of Critical Pathogens
- Rapid Diagnostic System to Deliver Same-Shift Antibiotic Susceptibility Test Results
- AST System Delivers Actionable Results for Gram-Negative Bacteria Directly from Positive Blood Cultures
- Ultra-Rapid Culture-Free Sepsis Test Reduces Testing Time from Days to Hours
- New Rapid Method for Determining Virus Infectivity Could Revolutionize Response to Future Pandemics
- Novel Molecular Test to Help Prevent and Control Multi Drug-Resistant Fungal Pathogen in Healthcare Settings
- Innovative C. Difficile Diagnostic Test Provides Both GDH and Toxin Results within 30 Minutes
- Rapid UTI Test Cuts Detection Time from 3 days to 45 Minutes
- POC STI Test Shortens Time from ED Arrival to Test Results
- Integrated Solution Ushers New Era of Automated Tuberculosis Testing
- Automated Sepsis Test System Enables Rapid Diagnosis for Patients with Severe Bloodstream Infections