LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Loop-Mediated Isothermal Amplification Discriminates Yaws Bacterium

By LabMedica International staff writers
Posted on 05 Feb 2020
Print article
Image: The innuPREP MP Basic Kit A for fast, efficient isolation of DNA and RNA of either viral or bacterial origin (Photo courtesy of Analytik Jena).
Image: The innuPREP MP Basic Kit A for fast, efficient isolation of DNA and RNA of either viral or bacterial origin (Photo courtesy of Analytik Jena).
Yaws, a neglected tropical disease caused by the bacterium Treponema pallidum subspecies pertenue, predominantly affects children living in low-income, rural communities of warm and humid regions.

Clinical manifestations of Yaws include lesions of the skin, bone, and cartilage, progressing to severe destructive lesions if left untreated. Serologic tests, including the T. pallidum particle agglutination and rapid plasma reagin tests remain the primary diagnostic tools for yaws. Newer point-of-care serologic tests have replaced traditional laboratory-based serologic assays in many settings

An international team of scientists working with the University of Freiburg (Freiburg, Germany) developed a novel molecular test to simultaneously detect T. pallidum and Haemophilus ducreyi based on mediator displacement Loop-Mediated Isothermal Amplification (LAMP). They validated the T. pallidum and H. ducreyi LAMP (TPHD-LAMP) by testing 293 clinical samples from patients with yaws-like lesions.

Swabs were collected from persons with yaws-like ulcers and placed in AssayAssure Multilock (Sierra Molecular, Princeton, NJ, USA) transport medium, then frozen at −20 °C until transported to Mast Diagnostica GmbH laboratory (Reinfeld, Germany). DNA was extracted from the samples by using innuPREP MP Basic Kit A (Analytik Jena, Jena, Germany). Isolated DNA was kept frozen at −20 °C until it was used for biplex T. pallidum and H. ducreyi LAMP (TPHD-LAMP), singleplex T. pallidum and H. ducreyi LAMP assays, and quantitative polymerase chain reaction (qPCR) testing.

The team detected T. pallidum in 59 (20.1%) samples, H. ducreyi in 155 (52.9%) samples, and T. pallidum and H. ducreyi co-infection in 19 (6.5%) samples using qPCR. When tested by TPHD-LAMP, they detected T. pallidum in 60 (20.5%) samples and H. ducreyi in 163 (55.6%) samples. They detected both targets in 12 (4.1%) samples. Taking qPCR as the reference standard, the diagnostic sensitivity of the TPHD-LAMP assay for T. pallidum was 84.7% and the specificity was 95.7%. For H. ducreyi, the sensitivity of the TPHD-LAMP assay was 91.6% and the specificity was 84.8%.

The authors concluded that their novel assay provided rapid molecular confirmation of T. pallidum and H. ducreyi DNA and might be suitable for use at the point of care. TPHD-LAMP could support yaws eradication by improving access to molecular diagnostic tests at the district hospital level. The study was published in the February 2020 issue of the journal Emerging Infectious Diseases.

Related Links:
University of Freiburg
Sierra Molecular
Mast Diagnostica
Analytik Jena


Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Toxoplasma Gondii Immunoassay
Toxo IgM AccuBind ELISA Kit
New
H.pylori Test
Humasis H.pylori Card

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.