Standard Pathology Tests Outperform Molecular Subtyping in Bladder Cancer
By LabMedica International staff writers Posted on 02 Jan 2020 |

Image: Electron micrograph of a bladder cancer cell: clinical pathology tests outperform molecular subtyping in bladder cancer (Photo courtesy of Jim Stallard).
Evolving diagnostic approaches include compiling databanks on gene expression and mutations present in a cancer type to find patterns of gene expression that are then used to subtype tumors that "pathologically look similar" but are molecularly different.
Studies indicate that molecular subtypes in muscle invasive bladder cancer predict the clinical outcome. The idea is that molecular subtypes are better equipped to indicate which cancer is more or less aggressive and to help steer treatment options like whether chemotherapy before surgery to remove a diseased bladder is better.
A team of scientists led by those at the Medical College of Georgia (Augusta, GA, USA) subtyped institutional cohort of 52 patients, including 39 with muscle invasive bladder cancer, an Oncomine (Thermo Fisher Scientific, Waltham, MA, USA) data set of 151 with muscle invasive bladder cancer and TCGA (The Cancer Genome Atlas) data set of 402 with muscle invasive bladder cancer. Subtyping was done using simplified panels (MCG-1 and MCG-Ext) which included only transcripts common in published studies and were analyzed for predicting metastasis, and cancer specific, overall and recurrence-free survival.
The team reported that MCG-1 was only 31% -36% accurate at predicting important indicators like likelihood of metastasis; disease specific survival, meaning surviving bladder cancer; or overall survival, meaning survival from all causes of death from the time of cancer diagnosis or beginning of treatment until the study's end. They looked again at the 402 patients whose specimens were in the dataset and found that 21 patients' tumors were actually low-grade. Patients with low-grade tumors have higher survivability and a better prognosis than patients with high-grade muscle invasive disease.
When they removed the low-grade cases from the TCGA dataset, MCG-1 accurately predicted essentially nothing, not even overall survival. Then they included some patients with low-grade tumors into their own dataset, which they had looked at originally, and MCG-1 was now able to predict metastasis and disease specific survival. All the existing subtypes are categorized as bad or better based on the cancer prognosis. The presence of the low-grade tumors in the classification of subtypes skewed the data to make it look like subtypes were predicting overall survival when really it was the grade of the cancer itself that was predictive.
Vinata B. Lokeshwar, PhD, a professor and corresponding author of the study, said, “Genetic profiling of a patient's tumor definitely has value in enabling you to discover the drivers of growth and metastasis that help direct that individual's treatment, even as it helps to identify new treatment targets. But using this information to subtype tumors does not appear to add diagnostic or prognostic value for patients.”
The authors concluded that molecular subtypes reflect bladder tumor heterogeneity and are associated with tumor grade. In multiple cohorts and subtyping classifications the clinical parameters outperformed subtypes for predicting the outcome. The study was published on January 1, 2020 in the Journal of Urology.
Related Links:
Medical College of Georgia
Oncomine
Studies indicate that molecular subtypes in muscle invasive bladder cancer predict the clinical outcome. The idea is that molecular subtypes are better equipped to indicate which cancer is more or less aggressive and to help steer treatment options like whether chemotherapy before surgery to remove a diseased bladder is better.
A team of scientists led by those at the Medical College of Georgia (Augusta, GA, USA) subtyped institutional cohort of 52 patients, including 39 with muscle invasive bladder cancer, an Oncomine (Thermo Fisher Scientific, Waltham, MA, USA) data set of 151 with muscle invasive bladder cancer and TCGA (The Cancer Genome Atlas) data set of 402 with muscle invasive bladder cancer. Subtyping was done using simplified panels (MCG-1 and MCG-Ext) which included only transcripts common in published studies and were analyzed for predicting metastasis, and cancer specific, overall and recurrence-free survival.
The team reported that MCG-1 was only 31% -36% accurate at predicting important indicators like likelihood of metastasis; disease specific survival, meaning surviving bladder cancer; or overall survival, meaning survival from all causes of death from the time of cancer diagnosis or beginning of treatment until the study's end. They looked again at the 402 patients whose specimens were in the dataset and found that 21 patients' tumors were actually low-grade. Patients with low-grade tumors have higher survivability and a better prognosis than patients with high-grade muscle invasive disease.
When they removed the low-grade cases from the TCGA dataset, MCG-1 accurately predicted essentially nothing, not even overall survival. Then they included some patients with low-grade tumors into their own dataset, which they had looked at originally, and MCG-1 was now able to predict metastasis and disease specific survival. All the existing subtypes are categorized as bad or better based on the cancer prognosis. The presence of the low-grade tumors in the classification of subtypes skewed the data to make it look like subtypes were predicting overall survival when really it was the grade of the cancer itself that was predictive.
Vinata B. Lokeshwar, PhD, a professor and corresponding author of the study, said, “Genetic profiling of a patient's tumor definitely has value in enabling you to discover the drivers of growth and metastasis that help direct that individual's treatment, even as it helps to identify new treatment targets. But using this information to subtype tumors does not appear to add diagnostic or prognostic value for patients.”
The authors concluded that molecular subtypes reflect bladder tumor heterogeneity and are associated with tumor grade. In multiple cohorts and subtyping classifications the clinical parameters outperformed subtypes for predicting the outcome. The study was published on January 1, 2020 in the Journal of Urology.
Related Links:
Medical College of Georgia
Oncomine
Latest Pathology News
- Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma
- Clinicopathologic Study Supports Exclusion of Cervical Serous Carcinoma from WHO Classification
- Mobile-Compatible AI-Powered System to Revolutionize Malaria Diagnosis
- Compact AI-Powered Microscope Enables Rapid Cost-Effective Cancer Scoring
- New Method Enables Precise Detection of Nanoplastics in Body
- AI-Powered Tool Improves Cancer Tissue Analysis
- AI Platform Uses 3D Visualization to Reveal Disease Biomarkers in Multiomics Data
- AI Tool Detects Early Signs of Blood Mutations Linked to Cancer and Heart Disease
- Multi-Omics AI Model Improves Preterm Birth Prediction Accuracy
- AI-Based Approach Diagnoses Colorectal Cancer from Gut Microbiota
- Topical Fluorescent Imaging Technique Detects Basal Cell Carcinoma
- AI Detects Early Prostate Cancer Missed by Pathologists
- AI Model Simultaneously Detects Multiple Genetic Colorectal Cancer Markers in Tissue Samples
- New Technology to Accelerate Diagnosis of Diabetic Kidney Disease
- Skin-Based Biomarkers to Enable Early Diagnosis of Amyotrophic Lateral Sclerosis
- AI Tools Analyze Kidney Disease at Cellular Level to Help Tailor Treatments
Channels
Clinical Chemistry
view channel
Gold Nanoparticles to Improve Accuracy of Ovarian Cancer Diagnosis
Ovarian cancer is considered one of the deadliest cancers, in part because it rarely shows clear symptoms in its early stages, and diagnosis is often complex. Current approaches make it difficult to accurately... Read more
Simultaneous Cell Isolation Technology Improves Cancer Diagnostic Accuracy
Accurate cancer diagnosis remains a challenge, as liquid biopsy techniques often fail to capture the complexity of tumor biology. Traditional systems for isolating circulating tumor cells (CTCs) vary in... Read moreHematology
view channel
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more
Platelets Could Improve Early and Minimally Invasive Detection of Cancer
Platelets are widely recognized for their role in blood clotting and scab formation, but they also play a crucial role in immune defense by detecting pathogens and recruiting immune cells.... Read more
Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment
Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read moreImmunology
view channel
Novel Tool Uses Deep Learning for Precision Cancer Therapy
Nearly 50 new cancer therapies are approved each year, but selecting the right one for patients with highly individual tumor characteristics remains a major challenge. Physicians struggle to navigate the... Read more
Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients
Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read moreMicrobiology
view channel
Microfluidic Platform Assesses Neutrophil Function in Sepsis Patients
Sepsis arises from infection and immune dysregulation, with neutrophils playing a central role in its progression. However, current clinical tools are unable to both isolate these cells and assess their... Read more
New Diagnostic Method Confirms Sepsis Infections Earlier
Sepsis remains one of the most dangerous medical emergencies, often progressing rapidly and becoming fatal without timely intervention. Each hour of delayed treatment in septic shock reduces patient survival... Read more
New Markers Could Predict Risk of Severe Chlamydia Infection
Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more
Portable Spectroscopy Rapidly and Noninvasively Detects Bacterial Species in Vaginal Fluid
Vaginal health depends on maintaining a balanced microbiome, particularly certain Lactobacillus species. Disruption of this balance, known as dysbiosis, can increase risks of infection, pregnancy complications,... Read morePathology
view channel
Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma
Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more
Clinicopathologic Study Supports Exclusion of Cervical Serous Carcinoma from WHO Classification
High-grade serous carcinoma is a rare diagnosis in cervical biopsies and can be difficult to distinguish from other tumor types. Cervical serous carcinoma is no longer recognized as a primary cervical... Read moreTechnology
view channel
Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine
The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Rapid Diagnostic Technology Utilizes Breath Samples to Detect Lower Respiratory Tract Infections
Respiratory tract infections (LRTIs) are leading causes of illness and death worldwide, particularly among vulnerable populations such as the elderly, young children, and those with compromised immune systems.... Read moreIndustry
view channel
VedaBio Partners With Mammoth Biosciences to Expand CRISPR-Based Diagnostic Technologies
VedaBio (San Diego, CA, USA) has entered into a non-exclusive license agreement with Mammoth Biosciences (Brisbane, CA, USA) for the use of select CRISPR-based technologies in diagnostic applications.... Read more