LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Asthma Severity Linked to Microbiome of Upper Airway

By LabMedica International staff writers
Posted on 01 Jan 2020
Print article
Image: The NUCLISENS EASYMAG instrument is designed to meet the most critical needs when it comes to premium quality total nucleic acid extraction. The system automates an enhanced magnetic silica version of BOOM technology, a gold standard for efficient universal extraction of RNA and DNA (Photo courtesy of bioMérieux).
Image: The NUCLISENS EASYMAG instrument is designed to meet the most critical needs when it comes to premium quality total nucleic acid extraction. The system automates an enhanced magnetic silica version of BOOM technology, a gold standard for efficient universal extraction of RNA and DNA (Photo courtesy of bioMérieux).
More than six million children under the age 18 have asthma in the USA. Asthma exacerbations have high impact on children, their families, the health care system, and may lead to subsequent decline in lung function.

Early signs of loss of asthma control, often referred to as the Yellow Zone (YZ), is a period during which the patient is at risk of symptom progression to severe exacerbation. The airway microbiome has an important role in asthma pathophysiology, but little is known on the relationships between the airway microbiome of asthmatic children, loss of asthma control, and severe exacerbations.

A team of scientists led by those at the Washington University School of Medicine (St Louis, MO, USA) conducted an upper airway microbiome study in conjunction with a clinical trial involving 214 children ages 5 to 11 with mild to moderate asthma. During that trial, the team collected nasal mucus samples from the children to study their upper airway microbiomes. Samples were collected at the beginning of the trial, when all of the participants had controlled asthma, as well as at the first early signs that asthma control was slipping.

The nasal samples were analyzed for common respiratory viruses by multiplex polymerase chain reaction (respiratory MultiCode assay; EraGen Biosciences, Madison, WI, USA). Total genomic DNA was extracted from 200 μL nasal blow samples using the NucliSENS easyMAG automated extractor kit (bioMérieux, Marcy-l'Étoile, France). To characterize the bacterial microbiota, the V1 to V3 regions of 16S rRNA gene were amplified, barcoded, and sequenced on the MiSeq platform (Illumina, San Diego, CA, USA). Quantification of the bacterial 16S rRNA gene copy number in nasal blow samples was performed using a modification of the BactQuant assay.

The investigators found that children who experienced early warning signs that their asthma was going to flare up were more likely to have bacteria associated with disease, including Staphylococcus, Streptococcus and Moraxella bacterial groups living in their upper airways. In contrast, airway microbes dominated by Corynebacterium and Dolosigranulum bacteria were associated with periods of good health, when asthma was well-controlled. The scientists also found that children whose airway microbial communities switched from being dominated by Corynebacterium and Dolosigranulum bacteria to being dominated by Moraxella bacteria were at the highest risk of worsening asthma symptoms compared with children whose microbial communities made any other kind of shift.

Yanjiao Zhou, MD, PhD, an assistant professor of medicine and first author of the study, said, “Our data demonstrated a rapid change of the airway microbiome in the children who transitioned from respiratory health to disease. It is also intriguing to find that the microbiome changing pattern could play an important role in asthma exacerbation.”

The authors concluded that they had demonstrated a relationship between upper-airway microbiota composition and the risk of both loss of asthma control and severe exacerbations, among school-aged children with asthma. The study was published on December 16, 2019 in the journal Nature Communications.

Related Links:
Washington University School of Medicine
EraGen Biosciences
bioMérieux
Illumina


Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Community-Acquired Pneumonia Test
RIDA UNITY CAP Bac
New
Silver Member
ACTH Assay
ACTH ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.