We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Uremic Toxins Level Measured in Parkinson’s Disease Patients

By LabMedica International staff writers
Posted on 27 Nov 2019
Print article
Image: The Hepcidin-25 (bioactive) HS ELISA RUO is a highly sensitive enzyme immunoassay for the quantitative measurement of Hepcidin-25 in serum or plasma. Hepcidin is elevated in Parkinson’s disease patients (Photo courtesy of DRG Instruments)
Image: The Hepcidin-25 (bioactive) HS ELISA RUO is a highly sensitive enzyme immunoassay for the quantitative measurement of Hepcidin-25 in serum or plasma. Hepcidin is elevated in Parkinson’s disease patients (Photo courtesy of DRG Instruments)
Uremic-retention solutes are the compounds whose concentration in an organism increases with decreasing kidney function. At uremic concentrations, they play a crucial role in the progression of chronic kidney diseases (CKD) and have negative outcomes.

Until now, the role of the compounds in pathogenesis of neurological disorders is not completely understood. However, a link between CKD and neurological disorders has been observed. Uremic toxins increase the risk of cognitive disorders and dementia in patients with kidney disease.

Scientists at the Medical University of Warsaw (Warsaw, Poland) collected plasma and cerebrospinal fluid (CSF) samples were from 27 volunteers (18 with Parkinson’s Disease (PD) and nine controls). Venous blood samples were collected into a tube with EDTA and without anticoagulants, and centrifuged. CSF samples were collected via lumber puncture and centrifuged to remove blood cells contamination, before freezing. Fresh serum was subjected to routine analyses including the measurement of C-reactive protein (CRP) and creatinine.

The team measured the concentrations of uremic toxins: indoxyl sulfate (IS), p-cresol sulfate (pCS), symmetric dimethylarginine (SDMA), asymmetric dimethylarginine (ADMA), and trimethylamine N-oxide (TMAO)) in CSF and plasma, and correlated them with inflammation and oxidative stress biomarkers. The level of toxins was determined using liquid chromatography coupled with tandem mass spectrometry. Hepcidin and prohepcidin levels in plasma were determined using enzyme-linked immunosorbent assay (ELISA) kits (DRG Instruments, Marburg, Germany). The absorbance for ELISA kits was measured using a SynergyMx microplate reader (BioTek Instruments, Winooski, VT, USA).

The team reported that there was no statistically significant difference between the study groups regarding the percentage of males, creatinine, CRP, TAC, and marker of oxidative stress: 8-Oxo-2'-deoxyguanosine (8-OHdG). PD patients were slightly older and had lower eGFR (all values were in the reference range regarding the age). They had elevated hepcidin level and lower prohepcidin concentration in plasma than the control group. In PD, for IS and pCS, CSF-plasma ratio was higher. Concentration of pCS in CSF was higher in PD compared to controls. TMAO level was also higher in plasma of that group. Patients with motor fluctuations had higher level of uremic toxins in CSF, but not in plasma.

The authors concluded that in PD, higher concentration of pCS in CSF was observed. The CSF-plasma ratio of pCS and IS was four and eight times higher in PD compared to the control group, respectively. It indicates their higher than expected concentration in CSF, compared to their levels in blood. Toxins were higher in CSF, but not in plasma of patients with motor fluctuations. Uremic toxins like pCS, IS, ADMA, SDMA, and TMAO can be associated with pathogenesis and progression of PD. The study was published on November 11, 2019 in the journal Clinica Chimica Acta.

Related Links:
Medical University of Warsaw
DRG Instruments
BioTek Instruments


Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Nutating Mixer
Enduro MiniMix
New
Unstirred Waterbath
HumAqua 5

Print article

Channels

Molecular Diagnostics

view channel
Image: Health Canada has approved SPINEstat, a first-in-class diagnostic blood test for axSpA, as a Class II medical device (Photo courtesy of Augurex)

First-in-Class Diagnostic Blood Test Detects Axial Spondyloarthritis

Axial spondyloarthritis (axSpA) is a chronic inflammatory autoimmune condition that typically affects individuals during their most productive years, with symptoms often emerging before the age of 45.... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more