Newly Identified Biomarker Distinguishes Potentially Aggressive Meningiomas
By LabMedica International staff writers Posted on 13 Nov 2019 |

Image: High magnification micrograph of a meningioma showing the characteristic whirling (Photo courtesy of Wikimedia Commons)
Identification of a novel biomarker will allow clinicians to differentiate between truly benign meningiomas and those that will eventually progress, grow rapidly, and spread.
Meningiomas, which arise from the membranes that surround the brain and spinal cord, are the most common tumor to arise from central nervous system. Meningiomas are graded based on their microscopic appearance, rate of growth, and tendency to spread to other tissues. Most WHO Grade 1 meningiomas carry a favorable prognosis. However, some become clinically aggressive with recurrence, invasion, and resistance to conventional therapies (grade 1.5; recurrent/progressive WHO grade 1 tumors requiring further treatment within 10 years).
Since no recognized genetic alterations are known to distinguish grade 1.5 from grade 1 tumors, investigators at the University of Washington School of Medicine (Seattle, USA) examined the possibility that protein modifications were more likely in the grade 1.5 tumors.
To this end, they used MS (mass spectroscopy)-based phosphoproteomics and peptide chip array kinomics to compare grade 1 and 1.5 tumors.
Phosphoproteomics is a branch of proteomics that identifies, catalogs, and characterizes proteins containing a phosphate group as a posttranslational modification. Phosphorylation is a key reversible modification that regulates protein function, subcellular localization, complex formation, degradation of proteins, and therefore cell signaling networks. It is estimated that between 30%–65% of all proteins may be phosphorylated, some multiple times, which provides clues to which protein or pathway might be activated. since a change in phosphorylation status almost always reflects a change in protein activity.
Kinomics is the study of the kinome, a global description of kinases and kinase signaling. Since kinases drive numerous signaling pathways in biology (both normal and disease), determining the pertinent kinases in a biological system is of high importance.
Results of the MS-based phosphoproteomics revealed differential Serine/Threonine phosphorylation in 32 phosphopeptides. The kinomic profiling by peptide chip array identified 10 phosphopeptides, including a 360% increase in phosphorylation of retinoblastoma 1 (RB1) protein, in the 1.5 group. Rb1 hyperphosphorylation at the S780 site distinguished grade 1.5 meningiomas in an independent cohort of 140 samples and was associated with decreased progression/recurrence-free survival.
“We have designated them grade 1.5 because they fall somewhere between grade 1 and grade 2 but until now we have had no way of telling which grade 1 tumors were, in fact, grade 1.5,” said senior author Dr. Manuel Ferreira, associate professor of neurological surgery at the University of Washington School of Medicine. “They look the same under the microscope and there are no clear genetic or other markers that identify them. We do not know what is causing Rb1 to be phosphorylated, and we do not know what effect the phosphorylation is having. But now we can stain tissue from a patient who has what appears to be a grade 1 meningioma and identify those whose tumors may be grade 1.5, requiring closer follow up and perhaps additional treatment. We hope this modified protein will not only serve as a biomarker to identify these tumors but also help us gain insights into the pathways that drive their behavior.”
The meningioma study was published in the October 15, 2019, online edition of the journal Clinical Cancer Research.
Related Links:
University of Washington School of Medicine
Meningiomas, which arise from the membranes that surround the brain and spinal cord, are the most common tumor to arise from central nervous system. Meningiomas are graded based on their microscopic appearance, rate of growth, and tendency to spread to other tissues. Most WHO Grade 1 meningiomas carry a favorable prognosis. However, some become clinically aggressive with recurrence, invasion, and resistance to conventional therapies (grade 1.5; recurrent/progressive WHO grade 1 tumors requiring further treatment within 10 years).
Since no recognized genetic alterations are known to distinguish grade 1.5 from grade 1 tumors, investigators at the University of Washington School of Medicine (Seattle, USA) examined the possibility that protein modifications were more likely in the grade 1.5 tumors.
To this end, they used MS (mass spectroscopy)-based phosphoproteomics and peptide chip array kinomics to compare grade 1 and 1.5 tumors.
Phosphoproteomics is a branch of proteomics that identifies, catalogs, and characterizes proteins containing a phosphate group as a posttranslational modification. Phosphorylation is a key reversible modification that regulates protein function, subcellular localization, complex formation, degradation of proteins, and therefore cell signaling networks. It is estimated that between 30%–65% of all proteins may be phosphorylated, some multiple times, which provides clues to which protein or pathway might be activated. since a change in phosphorylation status almost always reflects a change in protein activity.
Kinomics is the study of the kinome, a global description of kinases and kinase signaling. Since kinases drive numerous signaling pathways in biology (both normal and disease), determining the pertinent kinases in a biological system is of high importance.
Results of the MS-based phosphoproteomics revealed differential Serine/Threonine phosphorylation in 32 phosphopeptides. The kinomic profiling by peptide chip array identified 10 phosphopeptides, including a 360% increase in phosphorylation of retinoblastoma 1 (RB1) protein, in the 1.5 group. Rb1 hyperphosphorylation at the S780 site distinguished grade 1.5 meningiomas in an independent cohort of 140 samples and was associated with decreased progression/recurrence-free survival.
“We have designated them grade 1.5 because they fall somewhere between grade 1 and grade 2 but until now we have had no way of telling which grade 1 tumors were, in fact, grade 1.5,” said senior author Dr. Manuel Ferreira, associate professor of neurological surgery at the University of Washington School of Medicine. “They look the same under the microscope and there are no clear genetic or other markers that identify them. We do not know what is causing Rb1 to be phosphorylated, and we do not know what effect the phosphorylation is having. But now we can stain tissue from a patient who has what appears to be a grade 1 meningioma and identify those whose tumors may be grade 1.5, requiring closer follow up and perhaps additional treatment. We hope this modified protein will not only serve as a biomarker to identify these tumors but also help us gain insights into the pathways that drive their behavior.”
The meningioma study was published in the October 15, 2019, online edition of the journal Clinical Cancer Research.
Related Links:
University of Washington School of Medicine
Latest Molecular Diagnostics News
- New Blood Test for Leukemia Risk Detection Could Replace Bone Marrow Sampling
- Blood Test Detects Preeclampsia Risk Months Before Symptoms Appear
- mNGS CSF Test Outperforms Traditional Microbiological Testing for Infectious Diseases
- Point-Of-Care Test to Transform Early-Stage Cervical Cancer Diagnosis
- PET/ctDNA-Guided Approach Helps Determine Lymphoma Treatment
- Next-Generation 'Agnostic Diagnostics' to Detect Respiratory Viruses at POC
- First-Ever Test of Cure for Chagas Disease Determines Treatment Effectiveness
- Capsule Sponge Test Could Replace Endoscopies for Monitoring Esophageal Cancer Risk
- Nasal Swab Test Offers Simpler and Less Costly Virus Screening in High-Risk Settings
- DNA Test Accurately Predicts Resistance to Common Chemotherapy Treatments
- Umbilical Cord Blood Test Can Detect Early Sepsis in Preterm Infants
- Simple Blood Test Predicts Cognitive Decline in Alzheimer's Patients
- Molecular Biomarkers Pave Way for New Tests to Diagnose and Predict Breast Cancer
- Portable CRISPR-Based Molecular Technology Brings Highly Accurate Diagnostics to Point of Need
- Palm-Sized Device Detects Disease-Related Genetic Material In 45 Minutes
- Advanced Computational Tool Paves Way for Diagnostic Tests to Detect Hidden Genetic Mutations
Channels
Clinical Chemistry
view channel
New Reference Measurement Procedure Standardizes Nucleic Acid Amplification Test Results
Nucleic acid amplification tests (NAATs) play a key role in diagnosing a wide range of infectious diseases. These tests are generally known for their high sensitivity and specificity, and they can be developed... Read more
Pen-Like Tool Quickly and Non-Invasively Detects Opioids from Skin
Opioid drugs such as fentanyl, morphine, and oxycodone are the primary substances associated with overdose cases in the United States. Standard drug screening procedures typically involve collecting blood,... Read moreHematology
view channel
Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results
Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read moreImmunology
view channel
Blood Test Detects Organ Rejection in Heart Transplant Patients
Following a heart transplant, patients are required to undergo surgical biopsies so that physicians can assess the possibility of organ rejection. Rejection happens when the recipient’s immune system identifies... Read more
Liquid Biopsy Approach to Transform Diagnosis, Monitoring and Treatment of Lung Cancer
Lung cancer continues to be a major contributor to cancer-related deaths globally, with its biological complexity and diverse regulatory processes making diagnosis and treatment particularly difficult.... Read more
Computational Tool Exposes Hidden Cancer DNA Changes Influencing Treatment Resistance
Structural changes in tumor DNA are among the most damaging genetic alterations in cancer, yet they often go undetected, particularly when tissue samples are degraded or of low quality. These hidden genomic... Read moreMicrobiology
view channel
Credit Card-Sized Test Boosts TB Detection in HIV Hotspots
Current tuberculosis (TB) tests face major limitations when it comes to accurately diagnosing the infection in individuals living with HIV. HIV, a frequent co-infection with TB, complicates detection by... Read more
Fecal Metabolite Profiling Predicts Mortality in Critically Ill Patients
Critically ill patients in medical intensive care units (MICUs) often suffer from conditions such as acute respiratory distress syndrome (ARDS) or sepsis, which are linked to reduced diversity of gut microbiota... Read more
Portable Molecular POC System Rules Out UTIs in Just 35 Minutes
Urinary tract infections (UTIs) represent a massive burden on patients and healthcare systems. There are over 400 million UTI cases globally each year, of which around 90% are in women. Fast and accurate... Read more
POC Lateral Flow Test Detects Deadly Fungal Infection Faster Than Existing Techniques
Diagnosing mucormycosis—an aggressive and often deadly fungal infection—remains a major challenge due to the disease’s rapid progression and the lack of fast, accurate diagnostic tools. The problem became... Read morePathology
view channel
Cancer Chip Accurately Predicts Patient-Specific Chemotherapy Response
Esophageal adenocarcinoma (EAC), one of the two primary types of esophageal cancer, ranks as the sixth leading cause of cancer-related deaths worldwide and currently lacks effective targeted therapies.... Read more
Clinical AI Solution for Automatic Breast Cancer Grading Improves Diagnostic Accuracy
Labs that use traditional image analysis methods often suffer from bottlenecks and delays. By digitizing their pathology practices, labs can streamline their work, allowing them to take on larger caseloads... Read more
Saliva-Based Testing to Enable Early Detection of Cancer, Heart Disease or Parkinson’s
Saliva is one of the most accessible biological fluids, yet it remains underutilized in clinical practice. While saliva samples are used to perform genetic tests to determine, for example, paternity, the... Read moreTechnology
view channel
New POC Biosensing Technology Improves Detection of Molecular Biomarkers
Traditional diagnostic procedures in medicine typically involve sending a patient’s blood or tissue samples to clinical laboratories, where trained scientists perform testing and data interpretation.... Read more
Enhanced Lab Data Management and AI Critical to Labs of the Future, Finds Survey
Data plays a key role in the transformation of today’s digital laboratories, acting both as a key challenge and a catalyst for innovation, as revealed by a survey of over 150 scientists.... Read moreIndustry
view channel
AMP Releases Best Practice Recommendations to Guide Clinical Laboratories Offering HRD Testing
Homologous recombination deficiency (HRD) testing identifies tumors that are unable to effectively repair DNA damage through the homologous recombination repair pathway. This deficiency is often linked... Read more