LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Inexpensive LAMP-Based Schistosomiasis Tests Developed

By LabMedica International staff writers
Posted on 12 Nov 2019
Print article
Image: The hand-held Genie III scanner has a two-color fluorescence excitation and detection system (Photo courtesy of OPTIGENE Ltd).
Image: The hand-held Genie III scanner has a two-color fluorescence excitation and detection system (Photo courtesy of OPTIGENE Ltd).
Schistosomiasis is one of the most prevalent Neglected Tropical Diseases, affecting approximately 250 million people worldwide. Schistosoma mansoni is the most important species causing human intestinal schistosomiasis.

Several polymerase chain reaction (PCR)-based molecular approaches, including conventional PCR (cPCR), real-time quantitative PCR (qPCR), droplet digital PCR (ddPCR), have been proven effective in detection of schistosome-derived DNA with more sensitivity than parasitological and serological methods, especially in chronic infections and in low transmission areas.

Scientists at the University of Salamanca (Salamanca, Spain) originally developed a loop-mediated isothermal amplification (LAMP) method for the detection of S. mansoni DNA (SmMIT-LAMP). They have now developed an important improvement for SmMIT-LAMP molecular assay, transforming it into a cold maintenance dry format suitable for potentially manufacturing as kit for ready-to-use for schistosomiasis diagnosis.

DNA from three patients’ tissue samples with microscopy-confirmed infection with S. mansoni was tested by LAMP including cutaneous and hepatic biopsies and an appendix biopsy. DNA was isolated from tissue samples using the QIAamp DNA Mini Kit (QIAGEN, Hilden, Germany). The real-time SmMIT-LAMP reactions were performed in 8-tube Genie Strips on a portable Genie III device (OPTIGENE Ltd., Horsham, UK) at 65 °C for 60 minutes followed up by 10 minutes at 80 °C. Amplicons were confirmed on 1.5% agarose gels when required.

The team reported that endpoint results at 65–70 minutes (counting 60 minutes for reaction plus 5–10 minutes of inactivation) were clearly observed with naked eye by adding the fluorescent dye SYBR Green I post-amplification. The positive LAMP reactions turned to green; otherwise, they remained orange. Correlation of positive colorimetric results with the typical ladder of multiple bands on agarose gels was clear.

Real-time SmMIT-LAMP was carried out on a portable device using the same reaction conditions, but testing including or not betaine in the master mix. Real-time reactions worked properly in both cases and a strong correlation between the signal of the fluorescent EvaGreen dye and electrophoresis was obtained. However, removing betaine from the mixture resulted on a 10 minute reduction in the amplification time while showing identical intensity of electrophoresis bands. Both fresh and desiccated SmMIT-LAMP mixtures yielded amplification signals for S. mansoni-positive control and tissue samples. Nevertheless, a delay in the appearance of positive results and a decrease in the fluorescence signals were observed when using desiccated mixtures.

The authors concluded that the one-step dry-up protocol is simpler and faster than those previously reported and allows maintaining the functionality for at least three weeks at RT and up to five months at 4 °C. Their work demonstrated an important improvement for SmMIT-LAMP molecular assay, transformed into a cold maintenance dry format suitable for manufacturing as kit for ready-to-use for S. mansoni DNA detection. The study was published on October 14, 2019 in the journal Scientific Reports.

Related Links:
University of Salamanca
QIAGEN
OPTIGENE Ltd


Gold Member
Rotavirus Test
Rotavirus Test - 30003 – 30073
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Malaria Test
STANDARD Q Malaria P.f/Pan Ag
New
Centromere B Assay
Centromere B Test

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.