Immune Processes Linked to Multiple Sclerosis Genetics
By LabMedica International staff writers Posted on 17 Oct 2019 |

Image: A multiple sclerosis chip (MS chip) was designed using the Illumina iSelect platform (Photo courtesy of Illumina).
Multiple sclerosis (MS) is an autoimmune inflammatory degenerative disease of the central nervous system that often starts in young adulthood and affects 2.3 million individuals worldwide. While prior genetic studies have implicated the adaptive immune system in the disease, in particular T cells, much of the genetic architecture of MS has remained unknown.
The role of the adaptive arm of the immune system, particularly its CD4+ T cell component, has become clearer, with multiple different T cell subsets being implicated. Although the T cell component plays an important role, functional and epigenomic annotation studies have begun to suggest that other elements of the immune system may be involved as well.
Scientists involved with the International Multiple Sclerosis Genetics Consortium (Boston, MA, USA) analyzed genotyping data from a total of more than 47,000 MS patients and more than 68,000 unaffected controls. These included both existing datasets and two large-scale new datasets for replication studies. For the autosomal non- major histocompatibility complex (MHC) genome, they applied a partitioning approach to create regions of ±1 Mbp around the most statistically significant single nucleotide polymorphisms (SNP). The team designed the MS Chip using the Illumina iSelect platform, adding ~90K custom selected SNPs to the Illumina Exome Core content (~200K SNPs).
The team identified 233 associations with MS susceptibility that had genome-wide significance, including 32 loci on the major histocompatibility complex and one on the X chromosome. The latter might help explain why MS affects almost three times more women than men. Using gene expression and epigenomic data for T cells, monocytes, peripheral blood mononuclear cells, and prefrontal cortex tissue, the scientists found that MS risk loci are enriched in many types of immune cells and tissues, as well as in microglia, which are the immune cells of the brain, but not in other types of brain cells. Together with other functional studies into the effects of MS risk variants, they identified a list of 551 putative MS susceptibility genes with involvement in both innate and adaptive immune responses, many of which have roles in the development, maturation, and differentiation of B cells, T cells, natural killer cells, and myeloid cells.
The authors concluded that beyond the characterization of the molecular events that trigger MS, this map will also inform the development of primary prevention strategies because they can leverage this information to identify the subset of individuals who are at greatest risk of developing MS. Although insufficient by itself, an MS genetic risk score has a role to play in guiding the management of the population of individuals 'at risk' of MS (such as family members) when deployed in combination with other measures of risk and biomarkers that capture intermediate phenotypes along the trajectory from health to disease. The study was published on September 27, 2019, in the journal Science.
Related Links:
International Multiple Sclerosis Genetics Consortium
The role of the adaptive arm of the immune system, particularly its CD4+ T cell component, has become clearer, with multiple different T cell subsets being implicated. Although the T cell component plays an important role, functional and epigenomic annotation studies have begun to suggest that other elements of the immune system may be involved as well.
Scientists involved with the International Multiple Sclerosis Genetics Consortium (Boston, MA, USA) analyzed genotyping data from a total of more than 47,000 MS patients and more than 68,000 unaffected controls. These included both existing datasets and two large-scale new datasets for replication studies. For the autosomal non- major histocompatibility complex (MHC) genome, they applied a partitioning approach to create regions of ±1 Mbp around the most statistically significant single nucleotide polymorphisms (SNP). The team designed the MS Chip using the Illumina iSelect platform, adding ~90K custom selected SNPs to the Illumina Exome Core content (~200K SNPs).
The team identified 233 associations with MS susceptibility that had genome-wide significance, including 32 loci on the major histocompatibility complex and one on the X chromosome. The latter might help explain why MS affects almost three times more women than men. Using gene expression and epigenomic data for T cells, monocytes, peripheral blood mononuclear cells, and prefrontal cortex tissue, the scientists found that MS risk loci are enriched in many types of immune cells and tissues, as well as in microglia, which are the immune cells of the brain, but not in other types of brain cells. Together with other functional studies into the effects of MS risk variants, they identified a list of 551 putative MS susceptibility genes with involvement in both innate and adaptive immune responses, many of which have roles in the development, maturation, and differentiation of B cells, T cells, natural killer cells, and myeloid cells.
The authors concluded that beyond the characterization of the molecular events that trigger MS, this map will also inform the development of primary prevention strategies because they can leverage this information to identify the subset of individuals who are at greatest risk of developing MS. Although insufficient by itself, an MS genetic risk score has a role to play in guiding the management of the population of individuals 'at risk' of MS (such as family members) when deployed in combination with other measures of risk and biomarkers that capture intermediate phenotypes along the trajectory from health to disease. The study was published on September 27, 2019, in the journal Science.
Related Links:
International Multiple Sclerosis Genetics Consortium
Latest Immunology News
- Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
- Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
- Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions
- Cerebrospinal Fluid Test Predicts Dangerous Side Effect of Cancer Treatment
- New Test Measures Preterm Infant Immunity Using Only Two Drops of Blood
- Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer
- Novel Analytical Method Tracks Progression of Autoimmune Diseases
- 3D Bioprinted Gastric Cancer Model Uses Patient-Derived Tissue Fragments to Predict Drug Response
- Blood Test for Fungal Infections Could End Invasive Tissue Biopsies
- Cutting-Edge Microscopy Technology Enables Tailored Rheumatology Therapies
- New Discovery in Blood Immune Cells Paves Way for Parkinson's Disease Diagnostic Test
- AI Tool Uses Routine Blood Tests to Predict Immunotherapy Response for Various Cancers
- Blood Test Can Predict How Long Vaccine Immunity Will Last
- Microfluidic Chip-Based Device to Measure Viral Immunity
Channels
Clinical Chemistry
view channel
AI-Powered Blood Test Accurately Detects Ovarian Cancer
Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more
Automated Decentralized cfDNA NGS Assay Identifies Alterations in Advanced Solid Tumors
Current circulating cell-free DNA (cfDNA) assays are typically centralized, requiring specialized handling and transportation of samples. Introducing a flexible, decentralized sequencing system at the... Read moreMass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication
Speed and accuracy are essential when diagnosing diseases. Traditionally, diagnosing bacterial infections involves the labor-intensive process of isolating pathogens and cultivating bacterial cultures,... Read more
First Comprehensive Syphilis Test to Definitively Diagnose Active Infection In 10 Minutes
In the United States, syphilis cases have surged by nearly 80% from 2018 to 2023, with 209,253 cases recorded in the most recent year of data. Syphilis, which can be transmitted sexually or from mother... Read moreMolecular Diagnostics
view channel
POC Oral Swab Test to Increase Chances of Pregnancy in IVF
Approximately 15% of couples of reproductive age experience involuntary childlessness. A significant reason for this is the growing trend of delaying family planning, a global shift that is expected to... Read more
Microbial Cell-Free DNA Test Accurately Identifies Pathogens Causing Pneumonia and Other Lung Infections
Bronchoalveolar lavage (BAL) is a commonly used procedure for diagnosing lung infections, especially in immunocompromised patients. However, standard tests often fail to pinpoint the exact pathogen, leading... Read moreHematology
view channel
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read more
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read moreMicrobiology
view channel
New Blood Test Detects Up to Five Infectious Diseases at POC
Researchers have developed a prototype flow-through assay capable of detecting up to five different infections, with results that can be quickly analyzed and transmitted via a specialized smartphone app.... Read more
Molecular Stool Test Shows Potential for Diagnosing TB in Adults with HIV
Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis, led to 1.25 million deaths in 2023, with 13% of those occurring in people living with HIV. The current primary diagnostic method for... Read morePathology
view channel
Groundbreaking Chest Pain Triage Algorithm to Transform Cardiac Care
Cardiovascular disease is responsible for a third of all deaths worldwide, and chest pain is the second most common reason for emergency department (ED) visits. With EDs often being some of the busiest... Read more
AI-Based Liquid Biopsy Approach to Revolutionize Brain Cancer Detection
Detecting brain cancers remains extremely challenging, with many patients only receiving a diagnosis at later stages after symptoms like headaches, seizures, or cognitive issues appear. Late-stage diagnoses... Read moreTechnology
view channel
Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer
Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses
Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read moreIndustry
view channel
Qiagen Acquires NGS Analysis Software Company Genoox
QIAGEN (Venlo, the Netherlands) has signed a definitive agreement to acquire Genoox (Tel Aviv, Israel), a provider of artificial intelligence (AI)-powered software that enables clinical labs to scale and... Read more
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more