LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Type 1 Diabetes Risk Reflected in Gut Microbiome

By LabMedica International staff writers
Posted on 06 Sep 2019
Print article
Image: The E.Z.N.A Stool Extraction Kit Isolates DNA from stool samples using spin columns (Photo courtesy of Omega Bio-tek).
Image: The E.Z.N.A Stool Extraction Kit Isolates DNA from stool samples using spin columns (Photo courtesy of Omega Bio-tek).
Type 1 diabetes mellitus (T1D) is an autoimmune disorder characterized by the destruction of insulin-producing ß-cells in the pancreas, resulting in a life-long dependence on exogenous insulin. T1D is an autoimmune condition that can develop at any age.

According to recent estimates, there are 1.3 million adults in the USA living with diabetes. Although the causes of type 1 diabetes are not yet known, there are many risk factors for this metabolic condition. Genetic risk factors for T1D have been identified in over 50 diverse genetic loci, but the greatest genetic determinant of T1D remains the human leukocyte antigen (HLA) region.

A team of scientists including those from Linköping University (Linköping, Sweden) examined data available from the All Babies in Southeast Sweden (ABIS) study. They conducted the ABIS study with the aim of understanding why children develop conditions that primarily involve the immune system. The ABIS study contains data from questionnaires and biological samples on over 17,000 children born in 1997–1999. As part of the study, scientists collected biological samples "at birth, 1 year, 2–3 years, and 5–6 years of age." The samples included "blood, urine, stool, and hair."

To enable the comparison of different levels of HLA risk for developing T1D autoimmunity, subjects with available HLA genotype data were placed into one of four categories of risk based on their HLA genotype. DNA from each sample was extracted from ~200 mg of stool, using the E.Z.N.A Stool Extraction Kit. DNA used for subsequent polymerase chain reaction (PCR) was quantified and assessed for purity using a NanoDrop spectrophotometer. Amplicons from each sample were pooled and sequenced on the MiSeq platform.

The scientists reported that both the core microbiome and beta diversity differ with HLA risk group and genotype. In addition, protective HLA haplotypes are associated with bacterial genera Intestinibacter and Romboutsia. They found that children with a high genetic risk had a different composition in their gut microbiota and different gut microbiomes than children with a low risk. The authors concluded that the information gained from this type of cohort furthers our understanding of how HLA genetic risk drives changes in the gut microbiome and how genetics may be “setting the stage” for environmental triggers that ultimately lead to T1D autoimmunity. The study was published on August 9, 2019, in the journal Nature Communications.

Related Links:
Linköping University

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Centromere B Assay
Centromere B Test
New
Piezoelectric Micropump
Disc Pump

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.