LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

C. Difficile Bacteria Adapted to Spread in Hospitals

By LabMedica International staff writers
Posted on 29 Aug 2019
Print article
Image: The gut-infecting bacterium Clostridium difficile shown growing in a petri dish, and is evolving into two separate species with one group highly adapted to spread in hospitals (Photo courtesy of Anne Koerber/LSHTM).
Image: The gut-infecting bacterium Clostridium difficile shown growing in a petri dish, and is evolving into two separate species with one group highly adapted to spread in hospitals (Photo courtesy of Anne Koerber/LSHTM).
Clostridioides difficile, also known as Clostridium difficile, bacteria can infect the gut and are the leading cause of antibiotic-associated diarrhea worldwide. While someone is healthy and not taking antibiotics, millions of 'good' bacteria in the gut keep the C. difficile under control.

However, antibiotics wipe out the normal gut bacteria, leaving the patient vulnerable to C. difficile infection in the gut. This is then difficult to treat and can cause bowel inflammation and severe diarrhea. Often found in hospital environments, C. difficile forms resistant spores that allow it to remain on surfaces and spread easily between people, making it a significant burden on the healthcare system.

Scientists at the Wellcome Trust Sanger Institute (Hinxton, UK) and their colleagues collected and cultured 906 strains of C. difficile isolated from humans, animals, such as dogs, pigs and horses, and the environment. By sequencing the DNA of each strain, and comparing and analyzing all the genomes, they discovered that C. difficile is currently evolving into two separate species.

The team found that found that this emerging species, named C. difficile clade A, made up approximately 70% of the samples from hospital patients. It had changes in genes that metabolize simple sugars, so they then studied C. difficile in mice, and found that the newly emerging strains colonized mice better when their diet was enriched with sugar. It had also evolved differences in the genes involved in forming spores, giving much greater resistance to common hospital disinfectants. These changes allow it to spread more easily in healthcare environments.

Trevor Lawley, PhD, a molecular microbiologist and senior author of the study, said, “Our study provides genome and laboratory based evidence that human lifestyles can drive bacteria to form new species so they can spread more effectively. We show that strains of C. difficile bacteria have continued to evolve in response to modern diets and healthcare systems and reveal that focusing on diet and looking for new disinfectants could help in the fight against these bacteria.” The study was published on August 12, 2019, in the journal Nature Genetics.

Related Links:
Wellcome Trust Sanger Institute

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
TORCH Infections Test
TORCH Panel
New
Myeloperoxidase Assay
IDK MPO ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.