Rethinking Innovation in the Core Lab – the future of clinical chemistry
By Julie Kirkwood Posted on 29 Jul 2019 |
(Photo courtesy of AACC)
(Photo courtesy of AACC)
When it comes to the latest innovations in diagnostic tests, new technologies such as mass spectrometry and next-generation sequencing get a lot of attention. Traditional clinical chemistry assays? Not so much. Many of the assays in core chemistry laboratories are fundamentally the same as they have been for decades.
“To some extent, traditional chemistry has settled in,” said Jonathan Genzen, MD, PhD, section chief of chemistry and medical director of the automated core laboratory at ARUP Laboratories. He is also an associate professor of pathology at the University of Utah School of Medicine in Salt Lake City.
Yet experts agree there still is plenty of room for innovation in clinical chemistry. From harnessing the power of data to the discovery of new biomarkers, this field is advancing rapidly, and vendors are still investing heavily in the latest technologies.
“You’re seeing new platforms coming out constantly,” said Susan Evans, PhD, FAACC, principal and founder of BioDecisions Consulting in Los Gatos, California. These systems are becoming more interactive, efficient, and flexible, and they are able to meet the changing needs of core laboratories for smaller sample volumes, more data integration, and quality management.
“It’s not like [in vitro diagnostics] companies are sitting around saying, ‘Oh, my mainstream core lab instrument is good enough. It’s going to last for another 10 years because the chemistries are not changing,’” Evans said. “The companies understand that there is a need for continuous change, including the addition of new features and capabilities.”
The worldwide clinical chemistry market (including instruments, service, and reagents) amounts to nearly $8 billion and is one of the largest segments within the $60 billion in vitro diagnostics market, according to Greg Stutman, director of global solutions at IQVIA (BBC IVD Solutions). If heterogeneous immunoassay reagents are included, the total immunochemistry market triples.
“Clinical chemistry is typically the largest volume category of a laboratory and is expected to remain so in the future,” he said. “While novel menu launches in clinical chemistry may not be developing at the same pace as heterogeneous immunoassay, molecular, or next-generation sequencing, companies continue to invest material research and development funds into product line enhancements, such as more scalable and automated solutions, enhanced connectivity with other platforms, and improved [information technology] offerings.”
NEW CHEMISTRY ASSAYS
When it comes to test menus for clinical chemistry and related areas, several new assays and new biomarkers are in development, noted James Nichols, PhD, DABCC, FAACC, medical director of clinical chemistry and point-of-care testing at Vanderbilt University School of Medicine in Nashville. “Certainly, there are new tests that are always innovating in terms of the core laboratory,” Nichols said.
For example, high-sensitivity troponin assays for diagnosing myocardial infarction are now becoming available to laboratories in the United States, he said. New biomarkers may soon be available for diagnosing and monitoring traumatic brain injury, and encouraging research is emerging for tests for Alzheimer’s disease.
Evans noted developments in multi-analyte markers to screen for cancer and the use of artificial intelligence and machine learning to find combinations of physiological markers that correlate with disease states. For example, multi-analyte markers related to immune response to infection, perhaps in conjunction with molecular techniques, could help diagnose and predict the severity of infectious diseases, such as the outcome of a patient presenting with the early signs of sepsis.
Promising research also is underway involving biomarkers for ischemic stroke and for kidney disease, Evans commented. “There’s never a shortage of researchers looking for new markers, especially in the world of immunoassays.”
In addition to new assays, innovations are leading to improved performance of existing assays and in core laboratory instruments, she said. Automated platforms are being designed to handle a wider variety of sample types and smaller sample volumes.
Nichols also noted that radioactive and toxic components of many assays are being replaced with safer materials, and there are innovations in electrical technologies and biosensors.
FORMING NEW CONNECTIONS
Beyond new and improved assays, innovation is underway in how clinical chemistry connects through automation to other areas of clinical laboratories. This is a continuation of a trend that has been happening over the past few decades, as core laboratories have grown to encompass disciplines spanning chemistry, immunoassay, hematology, and hemostasis, among other categories, Stutman said.
“Going forward, more novel technologies once reserved for specialized settings, such as molecular/virology, may increasingly migrate into the core laboratory,” he observed.
Efforts are underway to connect both mass spectrometry and molecular diagnostics instruments to clinical chemistry systems, Nichols said. If mass spectrometry could be connected to chemistry and immunoassay analyzers on the same platform, drugs of abuse testing could be done in real time, with samples moving directly from immunoassay screening to confirmatory testing.
Likewise, if molecular diagnostics instruments were to connect to core laboratories, chemistry and immunoassay testing could be combined for diagnosing and monitoring infectious diseases, with follow-up molecular confirmation using the same sample on the same track, said Nichols.
The risk of contamination for molecular diagnostics tests has been a barrier in the past, but companies are coming up with new ways to manage this risk, he added.
INNOVATING WITH DATA
Meanwhile, advances in information technology (IT) and data analysis are impacting every area of clinical laboratories, including clinical chemistry. Diagnostics companies have improved the IT components of their products, Genzen said, incorporating dashboards and access to real-time analytics.
“It’s no longer an afterthought, but an active component of most major diagnostic companies in the clinical laboratory space to offer IT solutions that provide better access to viewing data in a way that’s meaningful,” Genzen said. “… I think it’s clearly going to grow and will hopefully become even more useful.”
With these tools, clinical chemists can use data to improve laboratory performance. For example, they can monitor turnaround time for STAT tests with color codes and alerts. They can review patient medians for drifts or shifts that might indicate a calibration issue. Clinical chemistry labs also are using laboratory-generated data in a research context, looking for patterns that may be predictive of health conditions or that might guide decisions on reflexive testing or add-on tests, Genzen added.
“Because we are used to working with a large number of analytes and substantive data sets, I think chemists in particular are in a good position to play that role and to participate in more [electronic medical record]-based patient care initiatives using all of that laboratory data,” Genzen said.
MINIATURIZING THE CORE LAB?
Looking farther into the future, Genzen and Nichols both speculated that the trends that have allowed many clinical chemistry assays to move to the point of care could ultimately influence the size of core laboratories, as well.
“Automation systems and chemistry instrumentation, oddly enough, have gotten a little bit bigger over time,” Genzen said. “With advances in technology and microfluidics, things should at some point start getting smaller.”
Right now, most core laboratories are optimized for economies of scale and high-volume testing based on traditionally sized collection tubes, he said, and cost per test on these platforms is much lower than on small devices at the point of care. Yet if microfluidic technologies were to become less expensive, this calculation could change.
“At some point in the future, the technology will catch up and things in a core clinical laboratory will start getting smaller, because I know a lot of labs are facing space pressures,” Genzen said. “You’ve got testing that’s growing but you don’t necessarily have the available space to grow into support of that testing. So at some point that momentum has to shift.”
In the meantime, clinical chemistry innovation will remain largely in the realms of developing new biomarkers, improving existing technologies, and connecting clinical chemistry with other areas of clinical laboratories. “If you think of the numbers of patients and volume of testing, this is still the core and the heart of clinical diagnostics,” Evans said. “… There’s still lots of fun things happening for the core lab.”
Julie Kirkwood is a freelance journalist who lives in Rochester, New York. +Email: julkirkwood@gmail.com
Learn more about these breakthrough innovations shaping the future of clinical testing and patient care at the AACC 71st Annual Scientific Meeting & Clinical Lab Expo. Discover new products by visiting over 800 exhibitors at the Clinical Lab Expo and explore the cutting edge of lab medicine inside the new AACC Innovation Zone.
“To some extent, traditional chemistry has settled in,” said Jonathan Genzen, MD, PhD, section chief of chemistry and medical director of the automated core laboratory at ARUP Laboratories. He is also an associate professor of pathology at the University of Utah School of Medicine in Salt Lake City.
Yet experts agree there still is plenty of room for innovation in clinical chemistry. From harnessing the power of data to the discovery of new biomarkers, this field is advancing rapidly, and vendors are still investing heavily in the latest technologies.
“You’re seeing new platforms coming out constantly,” said Susan Evans, PhD, FAACC, principal and founder of BioDecisions Consulting in Los Gatos, California. These systems are becoming more interactive, efficient, and flexible, and they are able to meet the changing needs of core laboratories for smaller sample volumes, more data integration, and quality management.
“It’s not like [in vitro diagnostics] companies are sitting around saying, ‘Oh, my mainstream core lab instrument is good enough. It’s going to last for another 10 years because the chemistries are not changing,’” Evans said. “The companies understand that there is a need for continuous change, including the addition of new features and capabilities.”
The worldwide clinical chemistry market (including instruments, service, and reagents) amounts to nearly $8 billion and is one of the largest segments within the $60 billion in vitro diagnostics market, according to Greg Stutman, director of global solutions at IQVIA (BBC IVD Solutions). If heterogeneous immunoassay reagents are included, the total immunochemistry market triples.
“Clinical chemistry is typically the largest volume category of a laboratory and is expected to remain so in the future,” he said. “While novel menu launches in clinical chemistry may not be developing at the same pace as heterogeneous immunoassay, molecular, or next-generation sequencing, companies continue to invest material research and development funds into product line enhancements, such as more scalable and automated solutions, enhanced connectivity with other platforms, and improved [information technology] offerings.”
NEW CHEMISTRY ASSAYS
When it comes to test menus for clinical chemistry and related areas, several new assays and new biomarkers are in development, noted James Nichols, PhD, DABCC, FAACC, medical director of clinical chemistry and point-of-care testing at Vanderbilt University School of Medicine in Nashville. “Certainly, there are new tests that are always innovating in terms of the core laboratory,” Nichols said.
For example, high-sensitivity troponin assays for diagnosing myocardial infarction are now becoming available to laboratories in the United States, he said. New biomarkers may soon be available for diagnosing and monitoring traumatic brain injury, and encouraging research is emerging for tests for Alzheimer’s disease.
Evans noted developments in multi-analyte markers to screen for cancer and the use of artificial intelligence and machine learning to find combinations of physiological markers that correlate with disease states. For example, multi-analyte markers related to immune response to infection, perhaps in conjunction with molecular techniques, could help diagnose and predict the severity of infectious diseases, such as the outcome of a patient presenting with the early signs of sepsis.
Promising research also is underway involving biomarkers for ischemic stroke and for kidney disease, Evans commented. “There’s never a shortage of researchers looking for new markers, especially in the world of immunoassays.”
In addition to new assays, innovations are leading to improved performance of existing assays and in core laboratory instruments, she said. Automated platforms are being designed to handle a wider variety of sample types and smaller sample volumes.
Nichols also noted that radioactive and toxic components of many assays are being replaced with safer materials, and there are innovations in electrical technologies and biosensors.
FORMING NEW CONNECTIONS
Beyond new and improved assays, innovation is underway in how clinical chemistry connects through automation to other areas of clinical laboratories. This is a continuation of a trend that has been happening over the past few decades, as core laboratories have grown to encompass disciplines spanning chemistry, immunoassay, hematology, and hemostasis, among other categories, Stutman said.
“Going forward, more novel technologies once reserved for specialized settings, such as molecular/virology, may increasingly migrate into the core laboratory,” he observed.
Efforts are underway to connect both mass spectrometry and molecular diagnostics instruments to clinical chemistry systems, Nichols said. If mass spectrometry could be connected to chemistry and immunoassay analyzers on the same platform, drugs of abuse testing could be done in real time, with samples moving directly from immunoassay screening to confirmatory testing.
Likewise, if molecular diagnostics instruments were to connect to core laboratories, chemistry and immunoassay testing could be combined for diagnosing and monitoring infectious diseases, with follow-up molecular confirmation using the same sample on the same track, said Nichols.
The risk of contamination for molecular diagnostics tests has been a barrier in the past, but companies are coming up with new ways to manage this risk, he added.
INNOVATING WITH DATA
Meanwhile, advances in information technology (IT) and data analysis are impacting every area of clinical laboratories, including clinical chemistry. Diagnostics companies have improved the IT components of their products, Genzen said, incorporating dashboards and access to real-time analytics.
“It’s no longer an afterthought, but an active component of most major diagnostic companies in the clinical laboratory space to offer IT solutions that provide better access to viewing data in a way that’s meaningful,” Genzen said. “… I think it’s clearly going to grow and will hopefully become even more useful.”
With these tools, clinical chemists can use data to improve laboratory performance. For example, they can monitor turnaround time for STAT tests with color codes and alerts. They can review patient medians for drifts or shifts that might indicate a calibration issue. Clinical chemistry labs also are using laboratory-generated data in a research context, looking for patterns that may be predictive of health conditions or that might guide decisions on reflexive testing or add-on tests, Genzen added.
“Because we are used to working with a large number of analytes and substantive data sets, I think chemists in particular are in a good position to play that role and to participate in more [electronic medical record]-based patient care initiatives using all of that laboratory data,” Genzen said.
MINIATURIZING THE CORE LAB?
Looking farther into the future, Genzen and Nichols both speculated that the trends that have allowed many clinical chemistry assays to move to the point of care could ultimately influence the size of core laboratories, as well.
“Automation systems and chemistry instrumentation, oddly enough, have gotten a little bit bigger over time,” Genzen said. “With advances in technology and microfluidics, things should at some point start getting smaller.”
Right now, most core laboratories are optimized for economies of scale and high-volume testing based on traditionally sized collection tubes, he said, and cost per test on these platforms is much lower than on small devices at the point of care. Yet if microfluidic technologies were to become less expensive, this calculation could change.
“At some point in the future, the technology will catch up and things in a core clinical laboratory will start getting smaller, because I know a lot of labs are facing space pressures,” Genzen said. “You’ve got testing that’s growing but you don’t necessarily have the available space to grow into support of that testing. So at some point that momentum has to shift.”
In the meantime, clinical chemistry innovation will remain largely in the realms of developing new biomarkers, improving existing technologies, and connecting clinical chemistry with other areas of clinical laboratories. “If you think of the numbers of patients and volume of testing, this is still the core and the heart of clinical diagnostics,” Evans said. “… There’s still lots of fun things happening for the core lab.”
Julie Kirkwood is a freelance journalist who lives in Rochester, New York. +Email: julkirkwood@gmail.com
Learn more about these breakthrough innovations shaping the future of clinical testing and patient care at the AACC 71st Annual Scientific Meeting & Clinical Lab Expo. Discover new products by visiting over 800 exhibitors at the Clinical Lab Expo and explore the cutting edge of lab medicine inside the new AACC Innovation Zone.
Latest AACC 2019 News
- Instrumentation Laboratory Presents New IVD Testing System
- Quidel Welcomes Newest Member of Triage Family
- ERBA Mannheim Unveils Next-Generation Automation
- Roche Demonstrates How Health Networks Are Driving Change in Labs and Beyond
- BioMérieux Spotlights Diagnostic Solutions in Use of Antibiotics
- Thermo Shows New Clinical Innovations
- Randox Launches New Innovations
- Streck Introduces Three New Antibiotic Resistance Detection Kits
- EKF Diagnostics Highlights Assay for Diabetes Patient Monitoring
- Sysmex America Exhibits New Products, Automation and Quality Solutions
- BBI Solutions Showcases Mobile Solutions Capabilities at AACC 2019
- MedTest Dx Releases New Product Line for Drugs of Abuse Testing
- Mesa Biotech Launches Molecular Test System at AACC 2019
- Ortho Clinical Diagnostics Highlights Groundbreaking Lab Technology
- Abbott Diagnostics Exhibits POC Diagnostics Solutions at AACC
- Beckman Coulter Demonstrates Latest Innovations in Lab Medicine
Channels
Clinical Chemistry
view channel
Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
In regions where access to clinics for routine blood tests presents financial and logistical obstacles, HIV patients are increasingly able to collect and send a drop of blood using paper-based devices... Read more
AI-Powered Raman Spectroscopy Method Enables Rapid Drug Detection in Blood
Accurately monitoring drug levels in the blood is essential for effective treatment, particularly in the management of cardiovascular diseases. Traditional techniques for monitoring blood drug levels often... Read more
Novel LC-MS/MS Assay Detects Low Creatinine in Sweat and Saliva
Timely and accurate monitoring of renal function is essential for managing patients at risk of acute kidney injury (AKI), which affects about 12% of hospitalized patients and up to 57% of ICU patients.... Read more
Biosensing Technology Breakthrough Paves Way for New Methods of Early Disease Detection
Nanopores are tiny openings that can detect individual molecules as they pass through, making them ideal for analyzing biomolecules like DNA and proteins. However, detecting proteins at extremely low ... Read moreMolecular Diagnostics
view channel
Portable Blood-Based Device Detects Colon Cancer
Colon cancer is the second leading cause of cancer-related deaths in the U.S., yet it is highly treatable when detected at an early stage. Traditional colonoscopy screenings, although effective, are unpleasant,... Read more
New DNA Test Diagnoses Bacterial Infections Faster and More Accurately
Antimicrobial resistance has emerged as a significant global health threat, causing at least one million deaths annually since 1990. The Global Research on Antimicrobial Resistance (GRAM) Project warns... Read more
Innovative Bio-Detection Platform Improves Early Cancer Screening and Monitoring
Cancer remains one of the leading causes of death globally, underscoring the critical need for more advanced, efficient, and early detection methods. Circulating tumor cells (CTCs) are cells that have... Read more
Blood Test Could Help More Women Survive Aggressive Triple Negative Breast Cancer
Cancer research shows that over 90% of women diagnosed with breast cancer at its earliest stage survive for five years or more. However, this survival rate dramatically decreases to just 30% when the cancer... Read moreHematology
view channel
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read more
WBC Count Could Predict Severity of COVID-19 Symptoms
The global health crisis caused by the SARS-CoV-2 virus continues to impact millions of people worldwide, with many experiencing persistent symptoms months after the initial diagnosis. Cognitive impairment... Read more
New Platelet Counting Technology to Help Labs Prevent Diagnosis Errors
Accurate platelet count testing is a significant challenge for laboratories. Inaccurate results can lead to misdiagnosis, missed diagnoses, and delayed treatment for a variety of potentially fatal conditions,... Read more
Streamlined Approach to Testing for Heparin-Induced Thrombocytopenia Improves Diagnostic Accuracy
Heparin-induced thrombocytopenia (HIT), a serious side effect of the blood thinner heparin, is difficult to diagnose because thrombocytopenia, or low platelet count, can be caused by a variety of factors... Read moreImmunology
view channelCerebrospinal Fluid Test Predicts Dangerous Side Effect of Cancer Treatment
In recent years, cancer immunotherapy has emerged as a promising approach where the patient's immune system is harnessed to fight cancer. One form of immunotherapy, called CAR-T-cell therapy, involves... Read more
New Test Measures Preterm Infant Immunity Using Only Two Drops of Blood
Preterm infants are particularly vulnerable due to their organs still undergoing development, which can lead to difficulties in breathing, eating, and regulating body temperature. This is especially true... Read more
Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer
Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read moreMicrobiology
view channel
Gastrointestinal Panel Delivers Rapid Detection of Five Common Bacterial Pathogens for Outpatient Use
Acute infectious gastroenteritis results in approximately 179 million cases each year in the United States, leading to a significant number of outpatient visits and hospitalizations. To address this, a... Read more
Rapid PCR Testing in ICU Improves Antibiotic Stewardship
A collaborative study led by the University of Plymouth (Devon, UK) has shown that rapid polymerase chain reaction (PCR) testing in the intensive care unit (ICU) improved antibiotic stewardship compared... Read morePathology
view channel
New Test Diagnoses High-Risk Childhood Brain Tumors
Medulloblastoma, which originates in the cerebellum, the rear part of the brain, is the most prevalent malignant brain tumor in children and is notoriously difficult to diagnose. Currently, identifying... Read more
Informatics Solution Elevates Laboratory Efficiency and Patient Care
QuidelOrtho Corporation (San Diego, CA, USA) has introduced the QuidelOrtho Results Manager System, a cutting-edge informatics solution designed to meet the increasing demands of modern laboratories.... Read more
Microfluidic Device Assesses Stickiness of Tumor Cells to Predict Cancer Spread
Ductal carcinoma in situ (DCIS), a type of early-stage breast cancer, is often referred to as stage zero breast cancer. In many cases, it remains harmless and does not spread beyond the milk ducts where... Read more
New AI Tool Outperforms Previous Methods for Identifying Colorectal Cancer from Tissue Sample Analysis
Tissue analysis typically involves a pathologist reviewing scanned digital slides from a patient’s intestinal sample and marking specific areas, such as those where cancerous and related tissues are present.... Read moreTechnology
view channel
POC Paper-Based Sensor Platform to Transform Cardiac Diagnostics
Cardiovascular diseases continue to be the leading cause of death worldwide, accounting for over 19 million fatalities annually. Early detection of myocardial infarction (MI), commonly known as a heart... Read more
Study Explores Impact of POC Testing on Future of Diagnostics
In today’s rapidly changing world, having quick and accurate access to medical information is more crucial than ever. Point-of-Care Diagnostics (PoC-D) and Point-of-Care Testing (PoC-T) are making this... Read more
Low-Cost, Fast Response Sensor Enables Early and Accurate Detection of Lung Cancer
Cancer biomarkers are valuable tools for early diagnosis as their concentration in body fluids, such as serum, can be measured to detect the disease at an earlier stage. Additionally, serum levels of these... Read moreIndustry
view channel
CACLP 2025 Unites Global Innovators in IVD Industry
CACLP (Shanghai, China) will be holding the 22nd China International In Vitro Diagnostic Expo, the largest and most influential gathering of the IVD industry in China, 22-24 March 2025 at the Hangzhou... Read more
Bio-Rad to Acquire Digital PCR Developer Stilla Technologies
Bio-Rad Laboratories (Hercules, CA, USA) has entered into a binding offer to purchase all equity interests in Stilla Technologies (Villejuif, France). The acquisition remains subject to consultation with... Read more