We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Cholera Diagnosed from Dried Spotted Filter Paper

By LabMedica International staff writers
Posted on 20 Jun 2019
Print article
Protocol summary of Vibrio cholerae DNA harvest from specimens preserved on filter paper cards (Photo courtesy of Wellcome Trust Sanger Institute).
Protocol summary of Vibrio cholerae DNA harvest from specimens preserved on filter paper cards (Photo courtesy of Wellcome Trust Sanger Institute).
Cholera outbreaks can rapidly induce high death tolls by overwhelming the capacity of health facilities, especially in remote areas or areas of civil unrest. Global estimates for cholera annually approximate four million cases worldwide with 95,000 deaths.

Stool specimens preserved on filter paper facilitate molecular analysis of Vibrio cholerae in resource-limited settings. Specimens preserved in a rapid, low-cost, safe and sustainable manner for sequencing provides previously unavailable data about circulating cholera strains.

An international team of scientists led by the Wellcome Trust Sanger Institute (Hinxton UK) tested Cameroonian stool specimens from 65 patients that were positive for V. cholerae by Crystal VC dipstick kit (Arkray Healthcare Pvt Ltd., Surat, India). Of these specimens, only 16 were processed according to two different protocols, called hereafter APW-enriched specimen spotted filter paper and culture-isolate spotted filter paper.

For APW-enriched specimen and culture isolate spotted on filter papers, a single spot of filter paper was excised and processed. The presence of V. cholerae was confirmed via multiplex polymerase chain reactions (PCRs) first targeting an outer membrane protein, OmpW, in combination with primers targeting cholera toxin A, ctxA. A second PCR confirmed the presence of the rfb gene specific for the O1 serogroup. Whole genome sequencing (WGS) was performed on a HiSeq 2500 platform (Illumina, San Diego, CA, USA) to generate 100 bp paired-end reads.

The scientists reported that WGS recovered close to a complete sequence of the V. cholerae O1 genome with satisfactory genome coverage from stool specimens enriched in alkaline peptone water (APW) and V. cholerae culture isolates, both spotted on filter paper. The minimum concentration of V. cholerae DNA sufficient to produce quality genomic information was 0.02 ng/μL. The genomic data confirmed the presence or absence of genes of epidemiological interest, including cholera toxin and pilus loci. WGS identified a variety of diarrheal pathogens from APW-enriched specimen spotted filter paper, highlighting the potential for this technique to explore the gut microbiome, potentially identifying co-infections, which may impact the severity of disease. WGS demonstrated that these specimens fit within the current global cholera phylogenetic tree, identifying the strains as the 7th pandemic El Tor.

The author concluded that WGS results allowed for mapping of short reads from APW-enriched specimen and culture isolate spotted filter papers this provided valuable molecular epidemiological sequence information on V. cholerae strains from remote, low-resource settings. These results identified the presence of co-infecting pathogens while providing rare insight into the specific V. cholerae strains causing outbreaks in cholera-endemic areas. The study was published on May 30, 2019, in the journal Public Library of Science Neglected Tropical Diseases.

Related Links:
Wellcome Trust Sanger Institute
Arkray Healthcare Pvt Ltd
Illumina


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Malondialdehyde HPLC Test
Malondialdehyde in Serum/Plasma – HPLC
New
HbA1c Test
HbA1c Rapid Test

Print article

Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Pathology

view channel
Image: The AI model accurately classifies pediatric sarcomas using digital pathology images alone (Photo courtesy of Shutterstock)

AI-Driven Analysis of Digital Pathology Images to Improve Pediatric Sarcoma Subtyping

Pediatric sarcomas are rare and diverse tumors that can develop in various types of soft tissue, such as muscle, tendons, fat, blood or lymphatic vessels, nerves, or the tissue surrounding joints.... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more