LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Sequencing Shows Promise for Diagnosing Prosthetic Joint Infections

By LabMedica International staff writers
Posted on 07 May 2019
Print article
Image: The MinION is the only portable real-time device for DNA and RNA sequencing (Photo courtesy of Oxford Nanopore).
Image: The MinION is the only portable real-time device for DNA and RNA sequencing (Photo courtesy of Oxford Nanopore).
A method is being developed for diagnosing infections associated with prosthetic joint implants that promises to provide results in a matter of hours as opposed to a week or more. The current gold standard is bacterial culture from periprosthetic tissue samples collected during surgery, although another option is culturing from sonicated explanted prostheses in saline.

Of approximately 113,000 total knee replacement surgeries performed in the UK in 2017, 6,500, or about 6%, were revision surgeries, and nearly a quarter of those surgeries took place because of an infection or suspicion of infection. Elbow replacement surgeries showed similar rates of infection-related revision surgeries, while shoulder and hip replacements were around 17%and 16% respectively.

A team of scientists associated with the University of Oxford (Oxford, UK) devised a workflow involved removing a prosthetic device during surgery then placing it in saline and sonicating it to obtain approximately 40 mL of sonication fluid, which is essentially the largest volume they can easily handle in the laboratory, which is allowed them to maximize the number of cells they can extract DNA from. The sonication step potentially increases the number of bacterial cells available in the sample because it disrupts the bacterial biofilm. The DNA is extracted from the sonicated samples, cleaned, and prepared into libraries, which are then sequenced. The work leveraged Oxford Nanopore sequencing technologies.

Teresa Street, PhD, a postdoctoral research student at Nuffield Department of Clinical Medicine (Oxford, UK) and a co-author of the study said, discussed her group's attempts to validate the technology as part of a completely culture-free method for diagnosing prosthetic joint implant infections. She said “That the current gold standard is bacterial culture from periprosthetic tissue samples collected during surgery, although another option is culturing from sonicated explanted prostheses in saline. However, culture from tissue samples is relatively insensitive, with detection rates around 65% and is a very busy process with many steps.”

Their analyses using this improved protocol have a high degree of concordance with culture testing, and in fact they have been able to detect positives for certain species that were culture-negative. In addition, in a few Staphylococcus-positive cases so far they have been able to identify antimicrobial resistance genes. In one sample, they were able to detect two different Staphylococcus organisms, one of which they could identify (S. haemolyticus) and one of which they could not.

They later used MALDI-ToF mass spectrometry to identify this organism as S. caprae, and realized they couldn't initially detect it because it was not in their reference database, underscoring the fact that metagenomic sequencing is only as good as the reference database being used. The study was presented at the European Congress of Clinical Microbiology and Infectious Diseases held April 13-16, 2019, in Amsterdam, The Netherlands.

Related Links:
University of Oxford
Nuffield Department of Clinical Medicine

Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Malaria Test
STANDARD Q Malaria P.f/Pan Ag

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.