Proteins Used for Diagnosing ALS
|
By LabMedica International staff writers Posted on 20 Nov 2018 |

Image: Q Exactive hybrid quadrupole-Orbitrap mass spectrometer (Photo courtesy of Thermo Fisher Scientific).
Proteins have been identified that may be useful in both earlier diagnosis of Amyotrophic Lateral Sclerosis (ALS) and in more accurate disease prognosis. ALS, often referred to as Lou Gehrig's disease, is a progressive, neurodegenerative disease that affects the brain and spinal cord. Currently, there is no effective treatment or cure.
No molecular biomarkers of neither diagnostic nor prognostic value exist for ALS. Diagnosis is often delayed one to two years from symptom onset while other confounding disorders are excluded and appropriate phenotypes present themselves. Since cerebrospinal fluid (CSF) is proximal to site of injury, it is more likely to be enriched with biomarkers of ALS compared to plasma and is often the fluid of choice for ALS and other diseases of the central nervous system.
Scientists from North Carolina State University (Raleigh, NC, USA) obtained samples of cerebrospinal fluid (CSF) and blood plasma from 33 ALS patients and 30 healthy individuals. The team used mass spectrometry and they identified over 1,000 different proteins in the fluids, and then used advanced machine learning techniques to develop models that consisted of multiple proteins. Nanoflow liquid chromatography tandem mass spectrometry (LC MS/MS) was performed and peptides were loaded directly on column at a flow rate of 400 nL/min. Peptides were separated at a flow rate of 300 nL/min using a 30 cm self-packed column. Data were collected using a top 12 data-dependent acquisition method on a quadrupole orbitrap.
The team selected two proteins that looked promising for both diagnostic and prognostic applications, and then conducted further analysis to validate their usefulness as biomarkers. The proteins, chitinase-3 like1 and alpha-1-antichymotrypsin, are associated with immune-system activation in the brain and thus could also be used as an objective way to measure effectiveness of current therapies directed at tempering this pathway. Proteins involved in complement activation, acute phase response and retinoid signaling pathways were significantly enriched in the CSF from ALS patients. Interestingly, immune-system activation is also known to play a role in other neurodegenerative diseases, such as Parkinson's and Alzheimer's, indicating the assays could potentially be used in these diseases as well.
Michael S. Bereman, PhD, an assistant professor and lead author of the study said, “Our goal is to create a panel of protein targets that could give doctors a quicker path to diagnosis for ALS patients, as well as an objective way to measure disease progression, or to test the efficacy of new drugs. Our next steps will be to look at changes in these proteins and their signaling pathways over time in fluids that have been longitudinally collected from ALS patients.” The study was published on November 5, 2018, in the journal Scientific Reports.
Related Links:
North Carolina State University
No molecular biomarkers of neither diagnostic nor prognostic value exist for ALS. Diagnosis is often delayed one to two years from symptom onset while other confounding disorders are excluded and appropriate phenotypes present themselves. Since cerebrospinal fluid (CSF) is proximal to site of injury, it is more likely to be enriched with biomarkers of ALS compared to plasma and is often the fluid of choice for ALS and other diseases of the central nervous system.
Scientists from North Carolina State University (Raleigh, NC, USA) obtained samples of cerebrospinal fluid (CSF) and blood plasma from 33 ALS patients and 30 healthy individuals. The team used mass spectrometry and they identified over 1,000 different proteins in the fluids, and then used advanced machine learning techniques to develop models that consisted of multiple proteins. Nanoflow liquid chromatography tandem mass spectrometry (LC MS/MS) was performed and peptides were loaded directly on column at a flow rate of 400 nL/min. Peptides were separated at a flow rate of 300 nL/min using a 30 cm self-packed column. Data were collected using a top 12 data-dependent acquisition method on a quadrupole orbitrap.
The team selected two proteins that looked promising for both diagnostic and prognostic applications, and then conducted further analysis to validate their usefulness as biomarkers. The proteins, chitinase-3 like1 and alpha-1-antichymotrypsin, are associated with immune-system activation in the brain and thus could also be used as an objective way to measure effectiveness of current therapies directed at tempering this pathway. Proteins involved in complement activation, acute phase response and retinoid signaling pathways were significantly enriched in the CSF from ALS patients. Interestingly, immune-system activation is also known to play a role in other neurodegenerative diseases, such as Parkinson's and Alzheimer's, indicating the assays could potentially be used in these diseases as well.
Michael S. Bereman, PhD, an assistant professor and lead author of the study said, “Our goal is to create a panel of protein targets that could give doctors a quicker path to diagnosis for ALS patients, as well as an objective way to measure disease progression, or to test the efficacy of new drugs. Our next steps will be to look at changes in these proteins and their signaling pathways over time in fluids that have been longitudinally collected from ALS patients.” The study was published on November 5, 2018, in the journal Scientific Reports.
Related Links:
North Carolina State University
Latest Clinical Chem. News
- VOCs Show Promise for Early Multi-Cancer Detection
- Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
- Gold Nanoparticles to Improve Accuracy of Ovarian Cancer Diagnosis
- Simultaneous Cell Isolation Technology Improves Cancer Diagnostic Accuracy
- Simple Non-Invasive Hair-Based Test Could Speed ALS Diagnosis
- Paper Strip Saliva Test Detects Elevated Uric Acid Levels Without Blood Draws
- Prostate Cancer Markers Based on Chemical Make-Up of Calcifications to Speed Up Detection
- Breath Test Could Help Detect Blood Cancers
- ML-Powered Gas Sensors to Detect Pathogens and AMR at POC
- Saliva-Based Cancer Detection Technology Eliminates Need for Complex Sample Preparation
- Skin Swabs Could Detect Parkinson’s Years Before Symptoms Appear
- New Clinical Chemistry Analyzer Designed to Meet Growing Demands of Modern Labs

- New Reference Measurement Procedure Standardizes Nucleic Acid Amplification Test Results
- Pen-Like Tool Quickly and Non-Invasively Detects Opioids from Skin
- Simple Urine Test Could Detect Multiple Cancers at Early Stage
- Earwax Test Accurately Detects Parkinson’s by Identifying Odor Molecules
Channels
Molecular Diagnostics
view channel
Blood Test Could Assess Concussion Severity in Teenagers with TBI
Diagnosing and monitoring concussion in adolescents is challenging because symptoms can persist for weeks and vary widely between patients. The need for objective tools is especially urgent for teen girls,... Read more
Simultaneous Analysis of Three Biomarker Tests Detects Elevated Heart Disease Risk Earlier
Accurately identifying individuals at high risk of heart attack remains a major challenge, especially when traditional indicators like cholesterol and blood pressure appear normal. Elevated levels of three... Read moreHematology
view channel
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more
Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read moreImmunology
view channel
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read more
Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
Immunotherapy has revolutionized cancer care by harnessing the immune system to fight tumors, yet predicting who will benefit remains a major challenge. Many patients undergo costly and taxing treatment... Read moreMicrobiology
view channel
15-Minute Blood Test Diagnoses Life-Threatening Infections in Children
Distinguishing minor childhood illnesses from potentially life-threatening infections such as sepsis or meningitis remains a major challenge in emergency care. Traditional tests can take hours, leaving... Read more
High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read morePathology
view channel
Simple Optical Microscopy Method Reveals Hidden Structures in Remarkable Detail
Understanding how microscopic fibers are organized in human tissues is key to revealing how organs function and how diseases disrupt them. However, these fiber networks have remained difficult to visualize... Read more
Hydrogel-Based Technology Isolates Extracellular Vesicles for Early Disease Diagnosis
Isolating extracellular vesicles (EVs) from biological fluids is essential for early diagnosis, therapeutic development, and precision medicine. However, traditional EV-isolation methods rely on ultra... Read moreTechnology
view channel
AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
Early detection of head and neck cancer remains difficult because the disease produces few or no symptoms in its earliest stages, and lesions often lie deep within the head or neck, where biopsy or endoscopy... Read more
AI-Powered Biosensor Technology to Enable Breath Test for Lung Cancer Detection
Detecting lung cancer early remains one of the biggest challenges in oncology, largely because current tools are invasive, expensive, or unable to identify the disease in its earliest phases.... Read moreIndustry
view channel
Roche and Freenome Collaborate to Develop Cancer Screening Tests
Roche (Basel, Switzerland) and Freenome (Brisbane, CA, USA have entered into a strategic collaboration to commercialize Freenome's cancer screening technology in international markets.... Read more








