We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Medica 2025 Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Proteins Used for Diagnosing ALS

By LabMedica International staff writers
Posted on 20 Nov 2018
Image: Q Exactive hybrid quadrupole-Orbitrap mass spectrometer (Photo courtesy of Thermo Fisher Scientific).
Image: Q Exactive hybrid quadrupole-Orbitrap mass spectrometer (Photo courtesy of Thermo Fisher Scientific).
Proteins have been identified that may be useful in both earlier diagnosis of Amyotrophic Lateral Sclerosis (ALS) and in more accurate disease prognosis. ALS, often referred to as Lou Gehrig's disease, is a progressive, neurodegenerative disease that affects the brain and spinal cord. Currently, there is no effective treatment or cure.

No molecular biomarkers of neither diagnostic nor prognostic value exist for ALS. Diagnosis is often delayed one to two years from symptom onset while other confounding disorders are excluded and appropriate phenotypes present themselves. Since cerebrospinal fluid (CSF) is proximal to site of injury, it is more likely to be enriched with biomarkers of ALS compared to plasma and is often the fluid of choice for ALS and other diseases of the central nervous system.

Scientists from North Carolina State University (Raleigh, NC, USA) obtained samples of cerebrospinal fluid (CSF) and blood plasma from 33 ALS patients and 30 healthy individuals. The team used mass spectrometry and they identified over 1,000 different proteins in the fluids, and then used advanced machine learning techniques to develop models that consisted of multiple proteins. Nanoflow liquid chromatography tandem mass spectrometry (LC MS/MS) was performed and peptides were loaded directly on column at a flow rate of 400 nL/min. Peptides were separated at a flow rate of 300 nL/min using a 30 cm self-packed column. Data were collected using a top 12 data-dependent acquisition method on a quadrupole orbitrap.

The team selected two proteins that looked promising for both diagnostic and prognostic applications, and then conducted further analysis to validate their usefulness as biomarkers. The proteins, chitinase-3 like1 and alpha-1-antichymotrypsin, are associated with immune-system activation in the brain and thus could also be used as an objective way to measure effectiveness of current therapies directed at tempering this pathway. Proteins involved in complement activation, acute phase response and retinoid signaling pathways were significantly enriched in the CSF from ALS patients. Interestingly, immune-system activation is also known to play a role in other neurodegenerative diseases, such as Parkinson's and Alzheimer's, indicating the assays could potentially be used in these diseases as well.

Michael S. Bereman, PhD, an assistant professor and lead author of the study said, “Our goal is to create a panel of protein targets that could give doctors a quicker path to diagnosis for ALS patients, as well as an objective way to measure disease progression, or to test the efficacy of new drugs. Our next steps will be to look at changes in these proteins and their signaling pathways over time in fluids that have been longitudinally collected from ALS patients.” The study was published on November 5, 2018, in the journal Scientific Reports.

Related Links:
North Carolina State University

Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Gel Cards
DG Gel Cards
Gold Member
Automatic Hematology Analyzer
DH-800 Series

Channels

Hematology

view channel
Image: Research has linked platelet aggregation in midlife blood samples to early brain markers of Alzheimer’s (Photo courtesy of Shutterstock)

Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk

Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more

Microbiology

view channel
Image: Development of targeted therapeutics and diagnostics for extrapulmonary tuberculosis at University Hospital Cologne (Photo courtesy of Michael Wodak/Uniklinik Köln)

Blood-Based Molecular Signatures to Enable Rapid EPTB Diagnosis

Extrapulmonary tuberculosis (EPTB) remains difficult to diagnose and treat because it spreads beyond the lungs and lacks easily accessible biomarkers. Despite TB infecting 10 million people yearly, the... Read more

Pathology

view channel
Image: The AI tool combines patient data and images to detect melanoma (Photo courtesy of Professor Gwangill Jeon/Incheon National University)

AI Tool to Transform Skin Cancer Detection with Near-Perfect Accuracy

Melanoma continues to be one of the most difficult skin cancers to diagnose because it often resembles harmless moles or benign lesions. Traditional AI tools depend heavily on dermoscopic images alone,... Read more
GLOBE SCIENTIFIC, LLC