LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Urine Test Detects River Blindness Filarial Worm

By LabMedica International staff writers
Posted on 11 Sep 2018
Image: A photomicrograph of a Onchocerca volvulus microfilaria larva, the cause of onchocerciasis, also known as river blindness (Photo courtesy of Dr. Lee Moore / CDC).
Image: A photomicrograph of a Onchocerca volvulus microfilaria larva, the cause of onchocerciasis, also known as river blindness (Photo courtesy of Dr. Lee Moore / CDC).
River blindness is a filarial disease, like elephantiasis, and occurs when the parasitic worm Onchocerca volvulus takes up residence in the skin. Adult worms deposit microfilaria at an alarming rate, which are ultimately re-spread by blackfly bites.

The microfilariae can migrate to the eye and die, releasing toxins and causing inflammation. People with the disease will slowly go blind without medical intervention. The current gold standard for detecting the parasitic worms is a "skin snip" biopsy. However, snips are generally insensitive indicators of infection, and the sensitivity of the skin snip decreases as the density of microfilaria in the skin decreases. Other tests cannot distinguish between past and current infections.

Scientists at the Scripps Research Institute had previously reported the discovery of the biomarker N-acetyl-tyramine-O-glucuronide (NATOG) in human urine samples and its ability to track treatment progression between medicated patients relative to placebo; they also established its capability to monitor disease burden in a jird model. NATOG is a human-produced metabolite of tyramine, which itself is produced as a nematode neurotransmitter.

The team took over 10 years to develop a new lateral flow assay (LFIA), but it is now ready for manufacturing and testing in the field. The key to the assay's success was in the making of designer antibodies to detect a unique biomarker that only shows up when a human host has metabolized a worm neurotransmitter called tyramine. Humans then secrete this biomarker in urine. A negative on the "dipstick" test shows a colored line in the test. If the patient has the parasite, the test would show no lines. The urine LFIA for onchocerciasis accurately identified 85% of analyzed patient samples.

Kim D. Janda, PhD, a Professor of Chemistry and senior author of the study, said, “Unlike the skin snip biopsy, this non-invasive test is the first to use a metabolite produced by adult worms. Moreover, the dipstick's inexpensive design, coupled with smartphone apps, would offer automatic image processing, which ultimately could translate to address critical gaps in the surveillance and treatment of river blindness.” The study was published on August 24, 2018, in the journal ACS Infectious Diseases.

Related Links:
Scripps Research Institute

New
Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
Portable Electronic Pipette
Mini 96
New
8-Channel Pipette
SAPPHIRE 20–300 µL
New
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay

Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more