Mast Cell Activation Test Diagnoses Allergic Diseases
|
By LabMedica International staff writers Posted on 16 May 2018 |

Image: Mast cells obtained from the human bone marrow; May-Grünwald/Giemsa stain of a resting human mast cell and a mast cell following activation-induced degranulation. Note the loss of granule staining (Photo courtesy of University Hospital of Bonn).
Peanut allergies are among the most common food allergies in children. Currently, doctors diagnose peanut allergy using a skin-prick test or immunoglobulin E (IgE) test, but this may result in over-diagnosis or false-positives and it cannot differentiate between sensitivity and true food allergy.
When skin-prick and IgE test results are unclear, allergists rely on an oral food challenge (OFC), which consists of feeding peanut in incrementally larger doses to a patient in a highly controlled setting in hospital to confirm allergy to the food. While the test is the gold standard for diagnosing food allergies, there is risk of causing severe allergic reactions.
Scientists at the University of Manchester (Manchester, UK) and their colleagues have developed a new laboratory test to diagnose peanut allergy. The team used blood samples from 174 children participating in allergy testing, 73 peanut allergic and 101 peanut-tolerant, the scientists added peanut protein to mast cells to screen for IgE-mediated activation. Levels of total IgE, peanut-specific IgE, and IgE to the recombinant allergen components were measured by using ImmunoCAP. Skin prick tests (SPTs) were undertaken according to national guidelines by using lancets and commercial peanut extract, with 1% histamine as a positive control. Images of mast cell activation were collected on an Olympus BX51 upright microscope.
The scientists found that human blood-derived mast cells (MCs) sensitized with sera from patients with peanut, grass pollen, and Hymenoptera (wasp venom) allergy demonstrated allergen-specific and dose-dependent degranulation, as determined based on both expression of surface activation markers (CD63 and CD107a) and functional assays (prostaglandin D2 and β-hexosaminidase release). In this cohort of peanut-sensitized subjects, the mast cell activation test (MAT) was found to have superior discrimination performance compared with other testing modalities, including component-resolved diagnostics and basophil activation tests. They identified five clusters or patterns of reactivity in the resulting dose-response curves, which at preliminary analysis corresponded to the reaction phenotypes seen at challenge.
The authors concluded that the MAT is a robust tool that can confer superior diagnostic performance compared with existing allergy diagnostics and might be useful to explore differences in effector cell function between basophils and MCs during allergic reactions. The study was published on March 5, 2018, in The Journal of Allergy and Clinical Immunology.
Related Links:
University of Manchester
When skin-prick and IgE test results are unclear, allergists rely on an oral food challenge (OFC), which consists of feeding peanut in incrementally larger doses to a patient in a highly controlled setting in hospital to confirm allergy to the food. While the test is the gold standard for diagnosing food allergies, there is risk of causing severe allergic reactions.
Scientists at the University of Manchester (Manchester, UK) and their colleagues have developed a new laboratory test to diagnose peanut allergy. The team used blood samples from 174 children participating in allergy testing, 73 peanut allergic and 101 peanut-tolerant, the scientists added peanut protein to mast cells to screen for IgE-mediated activation. Levels of total IgE, peanut-specific IgE, and IgE to the recombinant allergen components were measured by using ImmunoCAP. Skin prick tests (SPTs) were undertaken according to national guidelines by using lancets and commercial peanut extract, with 1% histamine as a positive control. Images of mast cell activation were collected on an Olympus BX51 upright microscope.
The scientists found that human blood-derived mast cells (MCs) sensitized with sera from patients with peanut, grass pollen, and Hymenoptera (wasp venom) allergy demonstrated allergen-specific and dose-dependent degranulation, as determined based on both expression of surface activation markers (CD63 and CD107a) and functional assays (prostaglandin D2 and β-hexosaminidase release). In this cohort of peanut-sensitized subjects, the mast cell activation test (MAT) was found to have superior discrimination performance compared with other testing modalities, including component-resolved diagnostics and basophil activation tests. They identified five clusters or patterns of reactivity in the resulting dose-response curves, which at preliminary analysis corresponded to the reaction phenotypes seen at challenge.
The authors concluded that the MAT is a robust tool that can confer superior diagnostic performance compared with existing allergy diagnostics and might be useful to explore differences in effector cell function between basophils and MCs during allergic reactions. The study was published on March 5, 2018, in The Journal of Allergy and Clinical Immunology.
Related Links:
University of Manchester
Latest Immunology News
- New Test Distinguishes Vaccine-Induced False Positives from Active HIV Infection
- Gene Signature Test Predicts Response to Key Breast Cancer Treatment
- Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
- Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
- Signature Genes Predict T-Cell Expansion in Cancer Immunotherapy
- Molecular Microscope Diagnostic System Assesses Lung Transplant Rejection
- Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer
- Luminescent Probe Measures Immune Cell Activity in Real Time
- Blood-Based Immune Cell Signatures Could Guide Treatment Decisions for Critically Ill Patients
- Novel Tool Predicts Most Effective Multiple Sclerosis Medication for Patients
- Companion Diagnostic Test for CRC Patients Identifies Eligible Treatment Population
- Novel Tool Uses Deep Learning for Precision Cancer Therapy
- Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients
- Novel Multiplex Assay Supports Diagnosis of Autoimmune Vasculitis
- Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer
- Simple Genetic Testing Could Predict Treatment Success in Multiple Sclerosis Patients
Channels
Clinical Chemistry
view channel
Chemical Imaging Probe Could Track and Treat Prostate Cancer
Prostate cancer remains a leading cause of illness and death among men, with many patients eventually developing resistance to standard hormone-blocking therapies. These drugs often lose effectiveness... Read more
Mismatch Between Two Common Kidney Function Tests Indicates Serious Health Problems
Creatinine has long been the standard for measuring kidney filtration, while cystatin C — a protein produced by all human cells — has been recommended as a complementary marker because it is influenced... Read moreMolecular Diagnostics
view channel
Simple Urine Test to Revolutionize Bladder Cancer Diagnosis and Treatment
Bladder cancer is one of the most common and deadly urological cancers and is marked by a high rate of recurrence. Diagnosis and follow-up still rely heavily on invasive cystoscopy or urine cytology, which... Read more
Blood Test to Enable Earlier and Simpler Detection of Liver Fibrosis
Persistent liver damage caused by alcohol misuse or viral infections can trigger liver fibrosis, a condition in which healthy tissue is gradually replaced by collagen fibers. Even after successful treatment... Read moreHematology
view channel
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreMicrobiology
view channel
Rapid Diagnostic Test Matches Gold Standard for Sepsis Detection
Sepsis kills 11 million people worldwide every year and generates massive healthcare costs. In the USA and Europe alone, sepsis accounts for USD 100 billion in annual hospitalization expenses.... Read moreRapid POC Tuberculosis Test Provides Results Within 15 Minutes
Tuberculosis remains one of the world’s deadliest infectious diseases, and reducing new cases depends on identifying individuals with latent infection before it progresses. Current diagnostic tools often... Read more
Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples
Bloodstream infections in sepsis progress quickly and demand rapid, precise diagnosis. Current blood-culture methods often take one to five days to identify the pathogen, leaving clinicians to treat blindly... Read morePathology
view channel
Tunable Cell-Sorting Device Holds Potential for Multiple Biomedical Applications
Isolating rare cancer cells from blood is essential for diagnosing metastasis and guiding treatment decisions, but remains technically challenging. Many existing techniques struggle to balance accuracy,... Read moreAI Tool Outperforms Doctors in Spotting Blood Cell Abnormalities
Diagnosing blood disorders depends on recognizing subtle abnormalities in cell size, shape, and structure, yet this process is slow, subjective, and requires years of expert training. Even specialists... Read moreTechnology
view channel
Artificial Intelligence Model Could Accelerate Rare Disease Diagnosis
Identifying which genetic variants actually cause disease remains one of the biggest challenges in genomic medicine. Each person carries tens of thousands of DNA changes, yet only a few meaningfully alter... Read more
AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
Early detection of head and neck cancer remains difficult because the disease produces few or no symptoms in its earliest stages, and lesions often lie deep within the head or neck, where biopsy or endoscopy... Read moreIndustry
view channel
Abbott Acquires Cancer-Screening Company Exact Sciences
Abbott (Abbott Park, IL, USA) has entered into a definitive agreement to acquire Exact Sciences (Madison, WI, USA), enabling it to enter and lead in fast-growing cancer diagnostics segments.... Read more








