We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Assays Using ddPCR Quantify DNA Fragments

By LabMedica International staff writers
Posted on 14 May 2018
Print article
Image: The C1000 Touch thermal cycler (Photo courtesy of Bio-Rad).
Image: The C1000 Touch thermal cycler (Photo courtesy of Bio-Rad).
Optimized droplet digital polymerase chain reaction (ddPCR) assays have been developed that quantify short and long DNA fragments. These assays have been used to analyze plasma cell-free (cfDNA) fragment size distribution in human blood.

Circulating cell-free genome in human body fluids is being utilized as a source of genetic material for noninvasive screening, diagnostic and prognostic tests in clinical practice. Plasma cfDNA fragment size distribution provides important information required for diagnostic assay development.

Doctors at the University of Nebraska Medical Center (Omaha, NE, USA) and their colleagues collected blood samples from certified healthy donors and first trimester pregnant donors. Plasma was separated immediately after blood draw by two centrifugation steps. Exosomes were isolated from cell-free plasma using Invitrogen Total Exosome isolation from plasma kit.

Plasma and plasma exosome DNA was extracted using QIAamp Circulating Nucleic Acid Kit. Bio-Rad Automated Droplet Generator was used to generate droplets and thermal cycling was done using Bio-Rad C1000 Touch Thermal cycler. DNA extracted from blood plasma was analyzed using Agilent Bioanalyzer 2100 instrument and Agilent DNA High Sensitivity Kit.

The team developed and optimized four different EvaGreen chemistry based ddPCR assays to amplify four different amplicons with different sizes from human β-actin gene in order to accurately quantify cfDNA with different sizes in human blood plasma. They used concentrated human blood plasma cfDNA as genetic material for the development of these assays. These assays amplify 76, 135, 490 and 905 bp amplicons from human β-actin gene.

The study showed that cfDNA in human blood plasma has two localizations. Blood plasma exosomes are one such localization harboring cfDNA of mostly small fragments. About 72% of cfDNA localized in exosomes are small DNA fragments, less than 490 bp. Blood plasma apoptotic bodies and nucleuses are the other localizations where cfDNA is present. DNA concentration in plasma pellet was seven-fold higher than plasma cfDNA.

The authors concluded that non-pregnant plasma cell-free and exosome DNA share a unique fragment distribution pattern, which is different from pregnant donor plasma and exosome DNA fragment distribution indicating the effect of physiological status on cfDNA fragment size distribution. Fragment distribution pattern for plasma pellet that includes apoptotic bodies and nuclear DNA was greatly different from plasma cell-free and exosome DNA. The study was published online on April 12, 2018, in the journal Clinica Chimica Acta.

Related Links:
University of Nebraska Medical Center

Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Malondialdehyde HPLC Test
Malondialdehyde in Serum/Plasma – HPLC
New
Herpes Simplex Virus ELISA
HSV 2 IgG – ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Pathology

view channel
Image: The AI model accurately classifies pediatric sarcomas using digital pathology images alone (Photo courtesy of Shutterstock)

AI-Driven Analysis of Digital Pathology Images to Improve Pediatric Sarcoma Subtyping

Pediatric sarcomas are rare and diverse tumors that can develop in various types of soft tissue, such as muscle, tendons, fat, blood or lymphatic vessels, nerves, or the tissue surrounding joints.... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more