Bacteria Play Critical Role in Driving Colon Cancers
|
By LabMedica International staff writers Posted on 12 Feb 2018 |

Image: Diagram of how bacteria play a critical role in the development of colon cancer (Photo courtesy of Elizabeth Cook).
Patients with an inherited form of colon cancer harbor two bacterial species that collaborate to encourage development of the disease, and the same species have been found in people who develop a sporadic form of colon cancer.
A process has been elucidated in which these bacteria invade the protective mucus layer of the colon and collude to create a microenvironment, complete with nutrients and everything the bacteria need to survive, that induces chronic inflammation and subsequent DNA damage that supports tumor formation.
Scientists at Johns Hopkins Medicine (Baltimore, MD, USA) and their collaborators investigated the relationship between the bacteria-caused biofilms and cancer formation, by examining colon tissue removed from six familial adenomatous polyposis (FAP) patients. About 5% of colon cancers are caused by a hereditary syndrome FAP, in which an inherited mutation launches a series of genetic changes that develop over time and eventually prompt the epithelial cells to turn malignant.
The team identified patchy bacterial biofilms composed predominately of Escherichia coli and Bacteroides fragilis. Genes for colibactin (clbB) and Bacteroides fragilis toxin (bft), encoding secreted oncotoxins, were highly enriched in FAP patients’ colonic mucosa compared to healthy individuals. Bacteroides fragilis and Escherichia coli, a surprising finding since the colon contains at least 500 different types of bacteria. Tests on 25 additional colon samples from FAP patients showed that the B. fragilis strain was a subtype, called ETBF, which makes a toxin that triggers certain oncogenic, or cancer-promoting, pathways in colon epithelial cells and causes colon inflammation.
The results revealed that ETBF's toxin spurs a cascade of events that promote colon inflammation that feeds back to act on the colon epithelial cells. First, the toxin triggers colon immune cells to produce interleukin-17 (IL-17). This inflammatory molecule then acts directly on the colon epithelial cells to trigger activation of a protein complex involved in promoting further inflammation, known as nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB). NFκB in turn induces the colon epithelial cells to produce several signaling molecules that recruit more immune cells, called myeloid cells, to the colon.
In addition to IL-17, the studies showed that ETBF digested the mucus layer, enabling the polyketide synthases positive (pks+) E. coli to adhere in larger numbers to the colon mucosa where together the bacteria induced increased DNA damage, a step preceding the gene mutations that underlie colon tumor formation. The study was published on February 2, 2018, in the journal Science.
Related Links:
Johns Hopkins Medicine
A process has been elucidated in which these bacteria invade the protective mucus layer of the colon and collude to create a microenvironment, complete with nutrients and everything the bacteria need to survive, that induces chronic inflammation and subsequent DNA damage that supports tumor formation.
Scientists at Johns Hopkins Medicine (Baltimore, MD, USA) and their collaborators investigated the relationship between the bacteria-caused biofilms and cancer formation, by examining colon tissue removed from six familial adenomatous polyposis (FAP) patients. About 5% of colon cancers are caused by a hereditary syndrome FAP, in which an inherited mutation launches a series of genetic changes that develop over time and eventually prompt the epithelial cells to turn malignant.
The team identified patchy bacterial biofilms composed predominately of Escherichia coli and Bacteroides fragilis. Genes for colibactin (clbB) and Bacteroides fragilis toxin (bft), encoding secreted oncotoxins, were highly enriched in FAP patients’ colonic mucosa compared to healthy individuals. Bacteroides fragilis and Escherichia coli, a surprising finding since the colon contains at least 500 different types of bacteria. Tests on 25 additional colon samples from FAP patients showed that the B. fragilis strain was a subtype, called ETBF, which makes a toxin that triggers certain oncogenic, or cancer-promoting, pathways in colon epithelial cells and causes colon inflammation.
The results revealed that ETBF's toxin spurs a cascade of events that promote colon inflammation that feeds back to act on the colon epithelial cells. First, the toxin triggers colon immune cells to produce interleukin-17 (IL-17). This inflammatory molecule then acts directly on the colon epithelial cells to trigger activation of a protein complex involved in promoting further inflammation, known as nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB). NFκB in turn induces the colon epithelial cells to produce several signaling molecules that recruit more immune cells, called myeloid cells, to the colon.
In addition to IL-17, the studies showed that ETBF digested the mucus layer, enabling the polyketide synthases positive (pks+) E. coli to adhere in larger numbers to the colon mucosa where together the bacteria induced increased DNA damage, a step preceding the gene mutations that underlie colon tumor formation. The study was published on February 2, 2018, in the journal Science.
Related Links:
Johns Hopkins Medicine
Latest Pathology News
- Intraoperative Tumor Histology to Improve Cancer Surgeries
- Rapid Stool Test Could Help Pinpoint IBD Diagnosis
- AI-Powered Label-Free Optical Imaging Accurately Identifies Thyroid Cancer During Surgery
- Deep Learning–Based Method Improves Cancer Diagnosis
- ADLM Updates Expert Guidance on Urine Drug Testing for Patients in Emergency Departments
- New Age-Based Blood Test Thresholds to Catch Ovarian Cancer Earlier
- Genetics and AI Improve Diagnosis of Aortic Stenosis
- AI Tool Simultaneously Identifies Genetic Mutations and Disease Type
- Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups
- Tumor Signals in Saliva and Blood Enable Non-Invasive Monitoring of Head and Neck Cancer
- Common Health Issues Can Influence New Blood Tests for Alzheimer’s Disease
- Blood Test Formula Identifies Chronic Liver Disease Patients with Higher Cancer Risk
- Tunable Cell-Sorting Device Holds Potential for Multiple Biomedical Applications
- AI Tool Outperforms Doctors in Spotting Blood Cell Abnormalities
- AI Tool Rapidly Analyzes Complex Cancer Images for Personalized Treatment
- Diagnostic Technology Performs Rapid Biofluid Analysis Using Single Droplet
Channels
Clinical Chemistry
view channel
Blood Test Could Predict and Identify Early Relapses in Myeloma Patients
Multiple myeloma is an incurable cancer of the bone marrow, and while many patients now live for more than a decade after diagnosis, a significant proportion relapse much earlier with poor outcomes.... Read more
Compact Raman Imaging System Detects Subtle Tumor Signals
Accurate cancer diagnosis often depends on labor-intensive tissue staining and expert pathological review, which can delay results and limit access to rapid screening. These conventional methods also make... Read moreMolecular Diagnostics
view channel
Blood Metabolite Signature Test Better Predicts Type 2 Diabetes Risk
Type 2 diabetes is rising worldwide and now accounts for more than 90% of all diabetes cases, driven by impaired insulin response and long-term metabolic dysfunction. The disease often develops silently... Read more
Genetic Test Could Detect Predisposition to Pancreatic Cancer
Pancreatic ductal adenocarcinoma is one of the deadliest cancers, largely because it is usually diagnosed at an advanced stage when treatment options are limited. The lack of effective population screening... Read moreHematology
view channel
AI Algorithm Effectively Distinguishes Alpha Thalassemia Subtypes
Alpha thalassemia affects millions of people worldwide and is especially common in regions such as Southeast Asia, where carrier rates can reach extremely high levels. While the condition can have significant... Read more
MRD Tests Could Predict Survival in Leukemia Patients
Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read moreImmunology
view channel
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
New Test Measures How Effectively Antibiotics Kill Bacteria
Antibiotics are typically evaluated by how well they inhibit bacterial growth in laboratory tests, but growth inhibition does not always mean the bacteria are actually killed. Some pathogens can survive... Read more
New Antimicrobial Stewardship Standards for TB Care to Optimize Diagnostics
Antibiotic resistance is rising worldwide, threatening the effectiveness of treatments for major infectious diseases, including tuberculosis (TB). Resistance to key TB drugs, such as bedaquiline, is of... Read moreTechnology
view channelAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channel
WHX Labs Dubai to Gather Global Experts in Antimicrobial Resistance at Inaugural AMR Leaders’ Summit
World Health Expo (WHX) Labs in Dubai (formerly Medlab Middle East), which will be held at Dubai World Trade Centre from 10-13 February, will address the growing global threat of antimicrobial resistance... Read more







