We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Test Detects Overdose Patients at Risk of Liver Damage

By LabMedica International staff writers
Posted on 28 Nov 2017
Image: A histopathology of extensive hepatocyte necrosis seen here in a case of paracetamol overdose. The hepatocytes at the right are dead, and those at the left are dying. This pattern can be seen with a variety of hepatotoxins (Photo courtesy of the University of Utah Medical School).
Image: A histopathology of extensive hepatocyte necrosis seen here in a case of paracetamol overdose. The hepatocytes at the right are dead, and those at the left are dying. This pattern can be seen with a variety of hepatotoxins (Photo courtesy of the University of Utah Medical School).
Paracetamol is a safe analgesic drug when taken at therapeutic doses; however, in overdose, paracetamol is hepatotoxic and is the most common cause of acute liver failure in the USA and Europe.

Current markers, serum alanine aminotransferase (ALT) activity and paracetamol concentration, lack sensitivity and specificity when measured soon after overdose such as at initial presentation to hospital. These limitations are further compounded in staggered overdose, for which there is an increased acute liver injury risk, but for which treatment nomograms are not recommended.

A team of medical scientists by the University of Liverpool (Liverpool, UK) and the University of Edinburgh (Edinburgh, UK) recruited two cohorts to assess the potential for biomarkers to stratify patients who overdose with paracetamol. The team completed two independent prospective studies: a derivation study (MAPP) in eight UK hospitals and a validation study (BIOPAR) in ten UK hospitals. Patients in both cohorts were adults (≥18 years in England, ≥16 years in Scotland), were diagnosed with paracetamol overdose.

Blood sample taken at first presentation to hospital was stored at −80 °C as plasma or serum. All blood results from the first hospital admission were recorded (paracetamol, alkaline phosphatase, γ-glutamyl transferase, bilirubin, creatinine, and alanine aminotransferase (ALT) concentration, prothrombin time, and international normalized ratio [INR]). The primary endpoint was acute liver injury indicating need for continued acetylcysteine treatment beyond the standard course (ALT activity >100 U/L.

The reference standard of injury was ALT concentration. MicroRNA-122 (miR-122), high mobility group box-1 (HMGB1), caspase-cleaved keratin-18 (K18), full-length K18, and glutamate dehydrogenase (GLDH) were measured in the admission blood sample, with miR-122 measured by polymerase chain reaction (PCR) and other markers measured by enzyme-linked immunosorbent assay (ELISA). Each biomarker was measured in each sample in duplicate. miR-122 concentration was expressed with reference to the circulating microRNA let-7d as the internal microRNA normalizer.

The team reported that between June 2, 2010, and May 29, 2014, 1,187 patients who required acetylcysteine treatment for paracetamol overdose were recruited (985 in the MAPP cohort; 202 in the BIOPAR cohort). In the derivation and validation cohorts, acute liver injury was predicted at hospital presentation by miR-122, HMGB1, and full-length K18, and results were similar in the validation cohort. A combined model of miR-122, HMGB1, and K18 predicted acute liver injury better than ALT alone.

James W Dear, FRCP, the lead author of the study, said, “Paracetamol overdose is very common and presents a large workload for already over-stretched Emergency Departments. These new blood tests can identify who will develop liver injury as soon as they first arrive at hospital. This could transform the care of this large, neglected, patient group.” The study was published on November 13, 2017, in the journal Lancet Gastroenterology & Hepatology.

Related Links:
University of Liverpool
University of Edinburgh
New
Gold Member
Hybrid Pipette
SWITCH
Collection and Transport System
PurSafe Plus®
Pipette
Accumax Smart Series
Clinical Chemistry System
P780

Channels

Molecular Diagnostics

view channel
Image: The Elecsys Dengue Ag assay is intended for the in vitro qualitative detection of dengue virus NS1 antigen in human serum and plasma (Photo courtesy of Roche)

Automated Test Distinguishes Dengue from Acute Fever-Causing Illnesses In 18 Minutes

Dengue fever remains the most common mosquito-borne viral infection worldwide, posing a major public health challenge as global cases continue to surge. In 2024 alone, more than 14.6 million infections... Read more

Hematology

view channel
Image: A schematic illustrating the coagulation cascade in vitro (Photo courtesy of Harris, N., 2024)

ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners

Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more

Microbiology

view channel
Image: EBP and EBP plus have received FDA 510(k) clearance and CE-IVDR Certification for use on the BD COR system (Photo courtesy of BD)

High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample

Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read more
GLOBE SCIENTIFIC, LLC