Rare Infection in Transplant Recipients Linked to Donors
|
By LabMedica International staff writers Posted on 01 Jun 2017 |

Image: Mycoplasma hominis, the bacteria responsible for a rare infection in transplant recipients (Photo courtesy of the Mayo Clinic).
The way in which heart and lung transplant recipients acquired a specific species of bacteria, Mycoplasma hominis, had been previously undefined, and the bacterium was difficult to test for and detect. Originally, this bacterium was considered to reside exclusively in, and be a potential pathogen of the area of the reproductive and urinary organs.
M. hominis resists most antibiotics, and the three antibiotic treatment recommendations for these infections are neither standard for post-transplant recipient care nor are they standard in therapy regimens for surgical site infections. Heart and lung transplant recipient infection caused by M. hominis may present with, surgical site infection and mediastinitis, which is an inflammation of tissue in mid-chest.
Scientists at the Mayo Clinic investigated lung and heart-lung transplants between 1998 and July 2015 at the Mayo Clinic. Seven previously unreported cases of transplant recipients with M. hominis infection were discovered. In each case, pre-transplant sputum cultures had tested negative for M. hominis. A literature review since 1950 found 15 cases of M. hominis infection in lung, heart or heart-lung transplant recipients. The way the bacteria spread remained uncertain. Given its normal residence in the genitourinary tract, some speculated that infection arose from urinary catheter placement during the transplant surgery.
Bronchoalveolar lavage samples were submitted for detecting organisms commonly found in immunocompromised hosts undergoing clinically indicated bronchoscopy were tested for M. hominis DNA. DNA was extracted on the MagNA Pure LC instrument using the MagNA Pure total nucleic acid isolation kit. Common testing methods have proven insufficient in identifying the bacteria, but the use of polymerase chain reaction offered a more time-sensitive and specific test for the bacteria. With this method, the scientists were able to focus in on a certain portion of DNA and then create multiple copies to amplify the segment. Polymerase chain reaction detection reduces the time to detect M. hominis to a few hours, compared to the two to five days needed for a culture media test.
Mark E. Wylam, MD, the lead investigator said, “These findings could affect how we approach the evaluation of organ donors. If potential transmission of these harmful bacteria can be identified and addressed, the recipient will face a decreased risk of infection and its serious complications. This study shows us that surveillance of both donor and recipient are important in recognizing M. hominis and the infection it can cause.” The study was published in the May 2017 issue of the journal EbioMedicine.
M. hominis resists most antibiotics, and the three antibiotic treatment recommendations for these infections are neither standard for post-transplant recipient care nor are they standard in therapy regimens for surgical site infections. Heart and lung transplant recipient infection caused by M. hominis may present with, surgical site infection and mediastinitis, which is an inflammation of tissue in mid-chest.
Scientists at the Mayo Clinic investigated lung and heart-lung transplants between 1998 and July 2015 at the Mayo Clinic. Seven previously unreported cases of transplant recipients with M. hominis infection were discovered. In each case, pre-transplant sputum cultures had tested negative for M. hominis. A literature review since 1950 found 15 cases of M. hominis infection in lung, heart or heart-lung transplant recipients. The way the bacteria spread remained uncertain. Given its normal residence in the genitourinary tract, some speculated that infection arose from urinary catheter placement during the transplant surgery.
Bronchoalveolar lavage samples were submitted for detecting organisms commonly found in immunocompromised hosts undergoing clinically indicated bronchoscopy were tested for M. hominis DNA. DNA was extracted on the MagNA Pure LC instrument using the MagNA Pure total nucleic acid isolation kit. Common testing methods have proven insufficient in identifying the bacteria, but the use of polymerase chain reaction offered a more time-sensitive and specific test for the bacteria. With this method, the scientists were able to focus in on a certain portion of DNA and then create multiple copies to amplify the segment. Polymerase chain reaction detection reduces the time to detect M. hominis to a few hours, compared to the two to five days needed for a culture media test.
Mark E. Wylam, MD, the lead investigator said, “These findings could affect how we approach the evaluation of organ donors. If potential transmission of these harmful bacteria can be identified and addressed, the recipient will face a decreased risk of infection and its serious complications. This study shows us that surveillance of both donor and recipient are important in recognizing M. hominis and the infection it can cause.” The study was published in the May 2017 issue of the journal EbioMedicine.
Latest Microbiology News
- Rapid Diagnostic Test Matches Gold Standard for Sepsis Detection
- Rapid POC Tuberculosis Test Provides Results Within 15 Minutes
- Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples
- Blood-Based Molecular Signatures to Enable Rapid EPTB Diagnosis
- 15-Minute Blood Test Diagnoses Life-Threatening Infections in Children
- High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
- Fast Noninvasive Bedside Test Uses Sugar Fingerprint to Detect Fungal Infections
- Rapid Sepsis Diagnostic Device to Enable Personalized Critical Care for ICU Patients
- Microfluidic Platform Assesses Neutrophil Function in Sepsis Patients
- New Diagnostic Method Confirms Sepsis Infections Earlier
- New Markers Could Predict Risk of Severe Chlamydia Infection
- Portable Spectroscopy Rapidly and Noninvasively Detects Bacterial Species in Vaginal Fluid
- CRISPR-Based Saliva Test Detects Tuberculosis Directly from Sputum
- Urine-Based Assay Diagnoses Common Lung Infection in Immunocompromised People
- Saliva Test Detects Implant-Related Microbial Risks
- New Platform Leverages AI and Quantum Computing to Predict Salmonella Antimicrobial Resistance
Channels
Clinical Chemistry
view channel
Chemical Imaging Probe Could Track and Treat Prostate Cancer
Prostate cancer remains a leading cause of illness and death among men, with many patients eventually developing resistance to standard hormone-blocking therapies. These drugs often lose effectiveness... Read more
Mismatch Between Two Common Kidney Function Tests Indicates Serious Health Problems
Creatinine has long been the standard for measuring kidney filtration, while cystatin C — a protein produced by all human cells — has been recommended as a complementary marker because it is influenced... Read moreHematology
view channel
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
New Test Distinguishes Vaccine-Induced False Positives from Active HIV Infection
Since HIV was identified in 1983, more than 91 million people have contracted the virus, and over 44 million have died from related causes. Today, nearly 40 million individuals worldwide live with HIV-1,... Read more
Gene Signature Test Predicts Response to Key Breast Cancer Treatment
DK4/6 inhibitors paired with hormone therapy have become a cornerstone treatment for advanced HR+/HER2– breast cancer, slowing tumor growth by blocking key proteins that drive cell division.... Read more
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read moreMicrobiology
view channel
Rapid Diagnostic Test Matches Gold Standard for Sepsis Detection
Sepsis kills 11 million people worldwide every year and generates massive healthcare costs. In the USA and Europe alone, sepsis accounts for USD 100 billion in annual hospitalization expenses.... Read moreRapid POC Tuberculosis Test Provides Results Within 15 Minutes
Tuberculosis remains one of the world’s deadliest infectious diseases, and reducing new cases depends on identifying individuals with latent infection before it progresses. Current diagnostic tools often... Read more
Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples
Bloodstream infections in sepsis progress quickly and demand rapid, precise diagnosis. Current blood-culture methods often take one to five days to identify the pathogen, leaving clinicians to treat blindly... Read morePathology
view channel
Tunable Cell-Sorting Device Holds Potential for Multiple Biomedical Applications
Isolating rare cancer cells from blood is essential for diagnosing metastasis and guiding treatment decisions, but remains technically challenging. Many existing techniques struggle to balance accuracy,... Read moreAI Tool Outperforms Doctors in Spotting Blood Cell Abnormalities
Diagnosing blood disorders depends on recognizing subtle abnormalities in cell size, shape, and structure, yet this process is slow, subjective, and requires years of expert training. Even specialists... Read moreTechnology
view channel
Artificial Intelligence Model Could Accelerate Rare Disease Diagnosis
Identifying which genetic variants actually cause disease remains one of the biggest challenges in genomic medicine. Each person carries tens of thousands of DNA changes, yet only a few meaningfully alter... Read more
AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
Early detection of head and neck cancer remains difficult because the disease produces few or no symptoms in its earliest stages, and lesions often lie deep within the head or neck, where biopsy or endoscopy... Read moreIndustry
view channel
Abbott Acquires Cancer-Screening Company Exact Sciences
Abbott (Abbott Park, IL, USA) has entered into a definitive agreement to acquire Exact Sciences (Madison, WI, USA), enabling it to enter and lead in fast-growing cancer diagnostics segments.... Read more








