Blood Sample Storage Evaluated for PEA Analysis
|
By LabMedica International staff writers Posted on 29 May 2017 |

Image: Drops of blood on filter paper, easy to store for future diagnostics (Photo courtesy of Jan Björkeste, Uppsala University).
A team of Swedish researchers evaluated and optimized conditions for storing samples of dried blood for current and future proximity extension assay (PEA) analysis.
Dried blood samples are attractive for sample preservation due to the ease and low cost of collection and storage. In a recent study, investigators at Uppsala University evaluated their suitability for protein measurements. The investigators analyzed 92 proteins with relevance for oncology using multiplex proximity extension assays (PEA) in dried blood spots collected on paper and stored for up to 30 years at either plus four degrees Celsius or minus 24 degrees Celsius.
According to the PEA method, a pair of oligonucleotide-labeled antibodies is allowed to pair-wise bind to the target protein present in the dried-blood sample in a homogeneous assay, with no need for washing. When the two probes are in close proximity, a new PCR target sequence is formed by a proximity-dependent DNA polymerization event. The resulting sequence is subsequently detected and quantified using standard real-time PCR. This method, which has been commercialized under the name Proseek Multiplex by Olink, allows detection of levels of 96 proteins (including four controls) from a disc 1.2 millimeters in diameter punched out of a dried blood spot (DBS) on filter paper.
The main findings of the study were that (1) the act of drying only slightly influenced detection of blood proteins in a reproducible manner, (2) detection of some proteins was not significantly affected by storage over the full range of three decades (34% and 76% of the analyzed proteins at plus four degrees Celsius and minus 24 degrees Celsius, respectively), while levels of others decreased slowly during storage with half-lives in the range of 10 to 50 years, and (3) detectability of proteins was less affected in dried samples stored at minus 24 degrees Celsius compared to at four degrees Celsius.
"This has several implications. First, you can prick your own finger and send in a dried blood spot by post. Second, at a minimal cost, it will be possible to build gigantic biobanks of samples obtained on a routine clinical basis. This means that samples can be taken before the clinical debut of a disease, to identify markers of value for early diagnosis, improving the scope for curative treatment," said senior author Dr. Ulf Landegren, professor of molecular medicine at Uppsala University.
The study was published in the May 13, 2017, online edition of the journal Molecular & Cellular Proteomics.
Dried blood samples are attractive for sample preservation due to the ease and low cost of collection and storage. In a recent study, investigators at Uppsala University evaluated their suitability for protein measurements. The investigators analyzed 92 proteins with relevance for oncology using multiplex proximity extension assays (PEA) in dried blood spots collected on paper and stored for up to 30 years at either plus four degrees Celsius or minus 24 degrees Celsius.
According to the PEA method, a pair of oligonucleotide-labeled antibodies is allowed to pair-wise bind to the target protein present in the dried-blood sample in a homogeneous assay, with no need for washing. When the two probes are in close proximity, a new PCR target sequence is formed by a proximity-dependent DNA polymerization event. The resulting sequence is subsequently detected and quantified using standard real-time PCR. This method, which has been commercialized under the name Proseek Multiplex by Olink, allows detection of levels of 96 proteins (including four controls) from a disc 1.2 millimeters in diameter punched out of a dried blood spot (DBS) on filter paper.
The main findings of the study were that (1) the act of drying only slightly influenced detection of blood proteins in a reproducible manner, (2) detection of some proteins was not significantly affected by storage over the full range of three decades (34% and 76% of the analyzed proteins at plus four degrees Celsius and minus 24 degrees Celsius, respectively), while levels of others decreased slowly during storage with half-lives in the range of 10 to 50 years, and (3) detectability of proteins was less affected in dried samples stored at minus 24 degrees Celsius compared to at four degrees Celsius.
"This has several implications. First, you can prick your own finger and send in a dried blood spot by post. Second, at a minimal cost, it will be possible to build gigantic biobanks of samples obtained on a routine clinical basis. This means that samples can be taken before the clinical debut of a disease, to identify markers of value for early diagnosis, improving the scope for curative treatment," said senior author Dr. Ulf Landegren, professor of molecular medicine at Uppsala University.
The study was published in the May 13, 2017, online edition of the journal Molecular & Cellular Proteomics.
Latest Molecular Diagnostics News
- Liquid Biopsy Test to Enable Earlier Diagnosis of Numerous Cancer Types
- Blood Protein Profile Indicates Early-Onset Coronary Heart Disease
- New DNA Test Tracks Spread of Parasitic Disease from Single Sample
- Hidden Blood Biomarkers to Revolutionize Diagnosis of Diabetic Kidney Disease
- Genetic Testing Trifecta Predicts Risk of Sudden Cardiac Death and Arrhythmia
- Maternal Blood Test Detects Pre-Eclampsia Risk Before Symptoms Develop
- Blood Test Could Assess Concussion Severity in Teenagers with TBI
- Simultaneous Analysis of Three Biomarker Tests Detects Elevated Heart Disease Risk Earlier
- New Biomarker Panel to Improve Heart Failure Diagnosis in Women
- Dual Blood Biomarkers Improve ALS Diagnostic Accuracy
- Automated Test Distinguishes Dengue from Acute Fever-Causing Illnesses In 18 Minutes
- High-Sensitivity Troponin I Assay Aids in Diagnosis of Myocardial Infarction
- Fast Low-Cost Alzheimer’s Tests Could Detect Disease in Early and Silent Stages
- Further Investigation of FISH-Negative Tests for Renal Cell Carcinoma Improves Diagnostic Accuracy
- First Direct Measurement of Dementia-Linked Proteins to Enable Early Alzheimer’s Detection
- New Diagnostic Method Detects Pneumonia at POC in Low-Resource Settings
Channels
Clinical Chemistry
view channel
Mismatch Between Two Common Kidney Function Tests Indicates Serious Health Problems
Creatinine has long been the standard for measuring kidney filtration, while cystatin C — a protein produced by all human cells — has been recommended as a complementary marker because it is influenced... Read more
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read moreHematology
view channel
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read more
Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
Immunotherapy has revolutionized cancer care by harnessing the immune system to fight tumors, yet predicting who will benefit remains a major challenge. Many patients undergo costly and taxing treatment... Read moreMicrobiology
view channel
Blood-Based Molecular Signatures to Enable Rapid EPTB Diagnosis
Extrapulmonary tuberculosis (EPTB) remains difficult to diagnose and treat because it spreads beyond the lungs and lacks easily accessible biomarkers. Despite TB infecting 10 million people yearly, the... Read more
15-Minute Blood Test Diagnoses Life-Threatening Infections in Children
Distinguishing minor childhood illnesses from potentially life-threatening infections such as sepsis or meningitis remains a major challenge in emergency care. Traditional tests can take hours, leaving... Read more
High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read morePathology
view channel
Simple Optical Microscopy Method Reveals Hidden Structures in Remarkable Detail
Understanding how microscopic fibers are organized in human tissues is key to revealing how organs function and how diseases disrupt them. However, these fiber networks have remained difficult to visualize... Read more
Hydrogel-Based Technology Isolates Extracellular Vesicles for Early Disease Diagnosis
Isolating extracellular vesicles (EVs) from biological fluids is essential for early diagnosis, therapeutic development, and precision medicine. However, traditional EV-isolation methods rely on ultra... Read moreTechnology
view channel
AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
Early detection of head and neck cancer remains difficult because the disease produces few or no symptoms in its earliest stages, and lesions often lie deep within the head or neck, where biopsy or endoscopy... Read more
AI-Powered Biosensor Technology to Enable Breath Test for Lung Cancer Detection
Detecting lung cancer early remains one of the biggest challenges in oncology, largely because current tools are invasive, expensive, or unable to identify the disease in its earliest phases.... Read moreIndustry
view channel
Abbott Acquires Cancer-Screening Company Exact Sciences
Abbott (Abbott Park, IL, USA) has entered into a definitive agreement to acquire Exact Sciences (Madison, WI, USA), enabling it to enter and lead in fast-growing cancer diagnostics segments.... Read more








