Novel Device May Provide Rapid POC Assessment of Clot Ability
By Michal Siman-Tov Posted on 13 Dec 2016 |

Image: The portable ClotChip will undergo clinical trials to further assess its ability to rapidly measure blood clotting at point-of-care with accuracy comparable to laboratory testing (Photo courtesy of Case Western Reserve University).
Researchers have developed a sensor that, on initial testing, accurately assessed blood-clotting ability 95 times faster than current methods, which uses only a single drop of blood. The device also provided more information than existing approaches.
The new device, “ClotChip,” was developed by researchers at Case Western Reserve University (CWRU; Cleveland, OH, USA) to provide rapid and accurate assessments essential for providing appropriate care for patients with blood clotting problems. XaTek, a new Cleveland-based company, has licensed the technology for ClotChip with a goal of bringing it to market within three years.
“ClotChip is designed to minimize the time and effort for blood-sample preparation. [It can] be used at the doctor’s office or other points-of-care for patients on anticoagulation therapy, antiplatelet therapy, or who have suffered a traumatic injury causing bleeding,” said Pedram Mohseni, professor of electrical engineering and computer science (EECS) at CWRU, who led the development of ClotChip with Michael Suster, an EECS senior research associate.
Existing measures typically require patients to visit laboratories where expert technicians administer tests, an approach that typically is time-consuming and expensive. While a few methods exist to allow on-site testing, to date they have not been nearly as precise as laboratory-based methods.
In preliminary tests ClotChip provided results in 15 minutes, as compared to current measures that can take a day or even longer. It also provided more information about the coagulation process, including effects of a relatively new class of drugs – target-specific oral anticoagulants (TSOACs).
TSOACs block clots from forming in a different way than warfarin (e.g. brand name Coumadin). Warfarin can interact negatively with several medications and foods and also requires frequent blood tests to monitor the drug’s effects. The new medications, including rivaroxaban (Xarelto) and apixaban (Eliquis), have been marketed as a far more convenient alternative. To date, however, the US Food and Drug Administration (FDA) has not approved a device to determine the impact of the new drugs.
With use of TSOACs growing rapidly, “there’s a huge opportunity and need,” said John Zak, president and CEO of XaTek, “There’s no readily available point-of-care, cost-effective, and accurate way to monitor these drugs.” He said the company hopes to complete a pilot clinical study and data analysis of ClotChip use on 200 patients at the Louis Stokes Cleveland VA Medical Center by the end of 2017. If the device proves effective in that initial evaluation, XaTek would seek to launch a full clinical trial within the following two years; and from there would seek FDA approval.
To monitor clotting, ClotChip uses an electrical technique called miniaturized dielectric spectroscopy, an approach that Prof. Mohseni, Dr. Suster, and team began developing six years ago. In essence, the technique applies an external electric field to the drop of blood, then quantitatively measures how the blood affects that field. The measurements reflect ability of the blood to clot. They then began collaborating with Evi Stavrou, assistant professor of hematology and oncology, Case Western Reserve School of Medicine. The three researchers are also investigators at Advanced Platform Technology (APT) Research Center.
The team found that ClotChip's sensitivity to the blood coagulation process made it an appealing option for point-of-care testing. “Our device gives you different information—and more information—than other devices out there,” said Prof. Stavrou, “The sensitivity and discriminatory ability of the device, when compared to standard coagulation tests, is what excites me very much.” And the device works so quickly that emergency responders could use it on site to determine whether a patient in trauma is on one of the blood-thinner medications. Such critical information also could be invaluable to medics in wartime.
Related Links:
Case Western Reserve University
The new device, “ClotChip,” was developed by researchers at Case Western Reserve University (CWRU; Cleveland, OH, USA) to provide rapid and accurate assessments essential for providing appropriate care for patients with blood clotting problems. XaTek, a new Cleveland-based company, has licensed the technology for ClotChip with a goal of bringing it to market within three years.
“ClotChip is designed to minimize the time and effort for blood-sample preparation. [It can] be used at the doctor’s office or other points-of-care for patients on anticoagulation therapy, antiplatelet therapy, or who have suffered a traumatic injury causing bleeding,” said Pedram Mohseni, professor of electrical engineering and computer science (EECS) at CWRU, who led the development of ClotChip with Michael Suster, an EECS senior research associate.
Existing measures typically require patients to visit laboratories where expert technicians administer tests, an approach that typically is time-consuming and expensive. While a few methods exist to allow on-site testing, to date they have not been nearly as precise as laboratory-based methods.
In preliminary tests ClotChip provided results in 15 minutes, as compared to current measures that can take a day or even longer. It also provided more information about the coagulation process, including effects of a relatively new class of drugs – target-specific oral anticoagulants (TSOACs).
TSOACs block clots from forming in a different way than warfarin (e.g. brand name Coumadin). Warfarin can interact negatively with several medications and foods and also requires frequent blood tests to monitor the drug’s effects. The new medications, including rivaroxaban (Xarelto) and apixaban (Eliquis), have been marketed as a far more convenient alternative. To date, however, the US Food and Drug Administration (FDA) has not approved a device to determine the impact of the new drugs.
With use of TSOACs growing rapidly, “there’s a huge opportunity and need,” said John Zak, president and CEO of XaTek, “There’s no readily available point-of-care, cost-effective, and accurate way to monitor these drugs.” He said the company hopes to complete a pilot clinical study and data analysis of ClotChip use on 200 patients at the Louis Stokes Cleveland VA Medical Center by the end of 2017. If the device proves effective in that initial evaluation, XaTek would seek to launch a full clinical trial within the following two years; and from there would seek FDA approval.
To monitor clotting, ClotChip uses an electrical technique called miniaturized dielectric spectroscopy, an approach that Prof. Mohseni, Dr. Suster, and team began developing six years ago. In essence, the technique applies an external electric field to the drop of blood, then quantitatively measures how the blood affects that field. The measurements reflect ability of the blood to clot. They then began collaborating with Evi Stavrou, assistant professor of hematology and oncology, Case Western Reserve School of Medicine. The three researchers are also investigators at Advanced Platform Technology (APT) Research Center.
The team found that ClotChip's sensitivity to the blood coagulation process made it an appealing option for point-of-care testing. “Our device gives you different information—and more information—than other devices out there,” said Prof. Stavrou, “The sensitivity and discriminatory ability of the device, when compared to standard coagulation tests, is what excites me very much.” And the device works so quickly that emergency responders could use it on site to determine whether a patient in trauma is on one of the blood-thinner medications. Such critical information also could be invaluable to medics in wartime.
Related Links:
Case Western Reserve University
Latest Hematology News
- New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
- Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
- WBC Count Could Predict Severity of COVID-19 Symptoms
- New Platelet Counting Technology to Help Labs Prevent Diagnosis Errors
- Streamlined Approach to Testing for Heparin-Induced Thrombocytopenia Improves Diagnostic Accuracy
- POC Hemostasis System Could Help Prevent Maternal Deaths
- New Test Assesses Oxygen Delivering Ability of Red Blood Cells by Measuring Their Shape
- Personalized CBC Testing Could Help Diagnose Early-Stage Diseases in Healthy Individuals
- Non-Invasive Test Solution Determines Fetal RhD Status from Maternal Plasma
- First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC
- Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results
- Newly Discovered Blood Group System to Help Identify and Treat Rare Patients
- Blood Platelet Score Detects Previously Unmeasured Risk of Heart Attack and Stroke
- Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere
- New Hematology Analyzers Deliver Combined ESR and CBC/DIFF Results in 60 Seconds
- Next Generation Instrument Screens for Hemoglobin Disorders in Newborns
Channels
Clinical Chemistry
view channel
‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreMolecular Diagnostics
view channel
Simple Blood Test Improves Heart Attack and Stroke Risk Prediction
Troponin is a protein found in heart muscle cells that is released into the bloodstream when the heart is damaged. High-sensitivity troponin blood tests are commonly used in hospitals to diagnose heart... Read more
Blood Biomarker Test Could Detect Genetic Predisposition to Alzheimer’s
New medications for Alzheimer’s disease, the most common form of dementia, are now becoming available. These treatments, known as “amyloid antibodies,” work by promoting the removal of small deposits from... Read more
Novel Autoantibody Against DAGLA Discovered in Cerebellitis
Autoimmune cerebellar ataxias are strongly disabling disorders characterized by an impaired ability to coordinate muscle movement. Cerebellar autoantibodies serve as useful biomarkers to support rapid... Read more
Gene-Based Blood Test Accurately Predicts Tumor Recurrence of Advanced Skin Cancer
Melanoma, an aggressive form of skin cancer, becomes extremely difficult to treat once it spreads to other parts of the body. For patients with metastatic melanoma tumors that cannot be surgically removed... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Spit Test More Accurate at Identifying Future Prostate Cancer Risk
Currently, blood tests that measure the level of a protein called prostate-specific antigen (PSA) are commonly used to identify men at higher risk for prostate cancer. This test is typically used based... Read more
DNA Nanotechnology Boosts Sensitivity of Test Strips
Since the Covid-19 pandemic, most people have become familiar with paper-based rapid test strips, also known as lateral flow immunoassays (LFIAs). These tests are used to quickly detect biomarkers that... Read more
Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read moreTechnology
view channel
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more