LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Blood Test Detects New Breast Cancer Subtype

By LabMedica International staff writers
Posted on 14 Sep 2016
Image: The QX200 Droplet Digital Polymerase Chain reaction  (ddPCR) system (Photo courtesy of Bio-Rad).
Image: The QX200 Droplet Digital Polymerase Chain reaction (ddPCR) system (Photo courtesy of Bio-Rad).
A blood test has been developed that detects when the most common form of breast cancer has become resistant to treatment could double the average time it takes for the disease to progress, from around two and a half to around six months.

The test detects mutations to a gene called estrogen receptor 1, or ESR1, which indicate that receptors for the female hormone estrogen in the cancer cells that are usually driven by the hormone have evolved to stay permanently switched on without it which means hormonal treatments that block estrogen production will no longer be effective.

Scientists at the Institute of Cancer Research (London, UK) and their colleagues analyzed blood samples from a total of 783 women enrolled on two major phase III clinical trials of new treatments for advanced estrogen receptor positive breast cancer, which accounts for three quarters of all cases. DNA extraction was performed using the QIAamp Circulating Nucleic Acid Kit (Qiagen, Hilden, Germany).

Total free DNA was quantified from plasma using RNase P as the reference gene. For ESR1 mutation analysis, the team used commercially available multiplex droplet digital polymerase chain reaction (ddPCR) assays for the seven most common ESR1 mutations. The ddPCR was performed on a QX200 system (Bio-Rad, Hercules, CA, USA). A multiplex assay was considered mutation positive if at least two ESR1 mutant droplets were observed. The results obtained on the multiplex ddPCR were further characterized using uniplex ddPCR assays.

The investigators found that nearly 40% of the 162 patient blood samples available, taken going into the trial, were found to have mutations in the estrogen receptor. These women responded better to fulvestrant, which delayed progression of the disease for 5.7 months, compared to 2.6 months on exemestane. For women without ESR1 mutations both treatments, fulvestrant and exemestane, had the same effectiveness.

The scientists also looked at a second trial that had compared treatment with fulvestrant and a placebo to fulvestrant and palbociclib. They found 25.3 %of patient blood samples had estrogen receptor mutations going into this trial. But because palbociclib targets different molecules, the patients had the same outcomes regardless of whether or not they had the mutation in the estrogen receptor.

Nicholas Turner, MD, PhD, a medical oncologist and team leader said, “Our results show that breast cancer with and without ESR1 mutations are distinct subtypes that respond differently to treatment. These subtypes can be diagnosed simply and cheaply from a blood test, and should be considered for future clinical trials of advanced breast cancer to ensure patients are receiving the best treatment for their cancer. For the first time we should able to use a potentially simple test to help us pick the best treatment for women with advanced cancer after their initial treatment has failed. We do need to confirm the results in another trial before we can implement this clinically.” The study was published on September 1, 2016, in the Journal of Clinical Oncology.

Related Links:
Institute of Cancer Research
Qiagen
Bio-Rad
Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Human Estradiol Assay
Human Estradiol CLIA Kit
Gold Member
Hybrid Pipette
SWITCH

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more