We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Blood Test Detects New Breast Cancer Subtype

By LabMedica International staff writers
Posted on 14 Sep 2016
Print article
Image: The QX200 Droplet Digital Polymerase Chain reaction  (ddPCR) system (Photo courtesy of Bio-Rad).
Image: The QX200 Droplet Digital Polymerase Chain reaction (ddPCR) system (Photo courtesy of Bio-Rad).
A blood test has been developed that detects when the most common form of breast cancer has become resistant to treatment could double the average time it takes for the disease to progress, from around two and a half to around six months.

The test detects mutations to a gene called estrogen receptor 1, or ESR1, which indicate that receptors for the female hormone estrogen in the cancer cells that are usually driven by the hormone have evolved to stay permanently switched on without it which means hormonal treatments that block estrogen production will no longer be effective.

Scientists at the Institute of Cancer Research (London, UK) and their colleagues analyzed blood samples from a total of 783 women enrolled on two major phase III clinical trials of new treatments for advanced estrogen receptor positive breast cancer, which accounts for three quarters of all cases. DNA extraction was performed using the QIAamp Circulating Nucleic Acid Kit (Qiagen, Hilden, Germany).

Total free DNA was quantified from plasma using RNase P as the reference gene. For ESR1 mutation analysis, the team used commercially available multiplex droplet digital polymerase chain reaction (ddPCR) assays for the seven most common ESR1 mutations. The ddPCR was performed on a QX200 system (Bio-Rad, Hercules, CA, USA). A multiplex assay was considered mutation positive if at least two ESR1 mutant droplets were observed. The results obtained on the multiplex ddPCR were further characterized using uniplex ddPCR assays.

The investigators found that nearly 40% of the 162 patient blood samples available, taken going into the trial, were found to have mutations in the estrogen receptor. These women responded better to fulvestrant, which delayed progression of the disease for 5.7 months, compared to 2.6 months on exemestane. For women without ESR1 mutations both treatments, fulvestrant and exemestane, had the same effectiveness.

The scientists also looked at a second trial that had compared treatment with fulvestrant and a placebo to fulvestrant and palbociclib. They found 25.3 %of patient blood samples had estrogen receptor mutations going into this trial. But because palbociclib targets different molecules, the patients had the same outcomes regardless of whether or not they had the mutation in the estrogen receptor.

Nicholas Turner, MD, PhD, a medical oncologist and team leader said, “Our results show that breast cancer with and without ESR1 mutations are distinct subtypes that respond differently to treatment. These subtypes can be diagnosed simply and cheaply from a blood test, and should be considered for future clinical trials of advanced breast cancer to ensure patients are receiving the best treatment for their cancer. For the first time we should able to use a potentially simple test to help us pick the best treatment for women with advanced cancer after their initial treatment has failed. We do need to confirm the results in another trial before we can implement this clinically.” The study was published on September 1, 2016, in the Journal of Clinical Oncology.

Related Links:
Institute of Cancer Research
Qiagen
Bio-Rad
New
Gold Member
Pneumocystis Jirovecii Detection Kit
Pneumocystis Jirovecii Real Time RT-PCR Kit
Unit-Dose Packaging solution
HLX
New
Human Immunodeficiency Virus Assay
RealLine HIV Quantitative Kit
New
Incubator
HettCube 120

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: The FDA clearance for the QIAstat-Dx Respiratory Panel Mini test follows the recent approval of QIAstat-Dx Respiratory Panel Plus (Photo courtesy of QIAGEN)

Respiratory Panel to Help Clinicians Make Precise Treatment Decisions in Outpatient Settings

Respiratory tract infections are the primary reason for visits to emergency departments and subsequent hospitalizations. In the U.S., it is estimated that there are up to 41 million cases of influenza... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Microbiology

view channel
Image: The InfectoSynovia test has the potential to revolutionize the diagnosis of periprosthetic joint infection (Photo courtesy of 123RF)

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Periprosthetic joint infection (PJI) represents a significant global issue that is worsening as the number of joint replacements increases due to aging populations. In the United States alone, the anticipated... Read more