LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Inherited Genetic Variant Increases Risk of Chronic Lymphocytic Leukemia

By LabMedica International staff writers
Posted on 01 Sep 2016
Print article
Image: A blood smear showing Chronic Lymphocytic Leukemia (Photo courtesy of Peter Maslak / ASH).
Image: A blood smear showing Chronic Lymphocytic Leukemia (Photo courtesy of Peter Maslak / ASH).
An inherited genetic variant, associated with an increased risk of developing the most common type of leukemia, helps cancer cells survive has been identified and these findings could lead to new ways to target the disease.

Genome wide association studies (GWAS) which analyze genetic information from both patients and healthy individuals to look for genetic associations with diseases have so far identified 31 areas of the genome where DNA variations are linked with an increased risk of developing chronic lymphocytic leukemia (CLL).

Scientists at The Institute of Cancer Research (London, UK) and their colleagues identified for the first time the role that a specific area of the genome plays in the formation of this leukemia. They found that a single letter DNA sequence variation, known as a single nucleotide polymorphism (SNP), at a specific site in the genome disrupts the activity of a protein called Transcription factor p65 or RELA. This protein is involved in a process of controlled cell death that is a key part of the body's natural defense against disease.

The investigators used published GWAS CLL data to scan 517 cases using HumanCNV370-Duo BeadChips (Illumina, San Diego, CA, USA) with Hap1.2M-Duo Custom array data on 2,698 individuals as controls. Others techniques used included epigenetic annotation, plasmid construction and luciferase assays analyzed on a Fluoroskan Ascent FL plate reader (Thermo Fisher Scientific, Waltham, MA, USA), and gene expression and splicing analysis.

The team found that the particular risk SNP, rs539846-A, interferes with the activity switch of a gene, called 'BCL-2 modifying factor' (BMF), that normally works to produce 'pro-death' signals. This makes it harder for RELA to flip on the activity of the gene and reduces the levels of the signal. This loss of 'pro-death' signal tips the balance towards 'pro-survival', so that the CLL cells can sidestep self-destruction. These findings complement work from recent clinical trials that showed drugs that mimic 'pro-death' proteins by targeting the 'pro-survival' BCL-2 pathway can produce a strong anti-cancer effect in CLL patients who had relapsed after initial treatment. The latest discovery could provide important insight into how these and similar drugs work so that their combined use can be optimized.

Richard S. Houlston, MD, PhD, a Professor of Molecular and Population Genetics, and lead investigator said, “Although many significant risk variants for this type of leukemia have been identified, the biological mechanisms through which these variants affect leukemia development have been less well studied. This study highlights the importance of cell death-inducing proteins such as BMF in controlling CLL development and could help in the design of new drugs to treat this disease.” The study was published on August 11, 2016, in the journal Cell Reports.

Related Links:
The Institute of Cancer Research
Illumina
Thermo Fisher Scientific
Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Coagulation Analyzer
CS-2400
New
Troponin I Test
Quidel Triage Troponin I Test

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.