Molecular Type 2 Diabetes Biomarker Identified
By LabMedica International staff writers Posted on 23 Feb 2016 |

Image: The HiScan SQ scanner (Photo courtesy of Illumina).
Type 2 diabetes mellitus (DM) is an established risk factor for a wide range of vascular diseases, including ischemic stroke (IS) as well as heart attacks, neuropathy and blindness.
Type 2 diabetes is a chronic illness characterized by the presence of elevated blood glucose levels and it accounts for between 80% and 90% of diabetes cases and is one of the major cardiovascular risk factors.
Scientists at the Hospital del Mar Medical Research Institute (Barcelona, Spain) investigated DNA methylation in the blood samples of a cohort of 355 stroke patients using a state-of-the-art technique that allows them to study more than 450,000 methylation points in the genome. In addition, the study compared the methylation profiles of diabetics and non-diabetics as well as their levels of glycosylated hemoglobin (HbA1c), a biomarker that indicates blood glucose levels over the past three months.
DNA samples were extracted from whole peripheral blood collected in 10 mL EDTA tubes. The Chemagic Magnetic Separation Module I system (Chemagen, Baesweiler, Germany) was used for DNA isolation in one cohort, and the Autopure LS (Qiagen, Hilden, Germany) in another. Genome-wide DNA methylation was assessed using the Illumina HumanMethylation450 Beadchip (Illumina Netherlands; Eindhoven, Netherlands) and the arrays were scanned with the Illumina HiScan SQ scanner.
The study was subsequently replicated in two cohorts from independent populations, with 167 and 645 patients respectively, confirming the relationship between Thioredoxin Interacting Protein (TXNIP) methylation, diabetes and glucose level dysfunction. Methylation of TXNIP was inversely and intensely associated with HbA1c levels specifically related to diabetic patients with poor control of glucose levels. The authors concluded that hypomethylation of the TXNIP gene is related to type 2 DM. The inverse relationship between TXNIP methylation and HbA1c values suggests that TXNIP hypomethylation is a consequence of sustained hyperglycemia levels.
Carolina Soriano-Tárraga, PhD, the lead author of the study said, “The methylation of this gene could be used as an early biomarker of dysfunction in the control of glucose levels. We are currently studying the implications and specific role of this gene in diabetes. In the future it could provide a possible therapeutic target for treating diabetes or controlling glucose concentrations.” The study was published originally online on December 7, 2015, in the journal Human Molecular Genetics.
Related Links:
Hospital del Mar Medical Research Institute
Chemagen
Illumina Netherlands
Type 2 diabetes is a chronic illness characterized by the presence of elevated blood glucose levels and it accounts for between 80% and 90% of diabetes cases and is one of the major cardiovascular risk factors.
Scientists at the Hospital del Mar Medical Research Institute (Barcelona, Spain) investigated DNA methylation in the blood samples of a cohort of 355 stroke patients using a state-of-the-art technique that allows them to study more than 450,000 methylation points in the genome. In addition, the study compared the methylation profiles of diabetics and non-diabetics as well as their levels of glycosylated hemoglobin (HbA1c), a biomarker that indicates blood glucose levels over the past three months.
DNA samples were extracted from whole peripheral blood collected in 10 mL EDTA tubes. The Chemagic Magnetic Separation Module I system (Chemagen, Baesweiler, Germany) was used for DNA isolation in one cohort, and the Autopure LS (Qiagen, Hilden, Germany) in another. Genome-wide DNA methylation was assessed using the Illumina HumanMethylation450 Beadchip (Illumina Netherlands; Eindhoven, Netherlands) and the arrays were scanned with the Illumina HiScan SQ scanner.
The study was subsequently replicated in two cohorts from independent populations, with 167 and 645 patients respectively, confirming the relationship between Thioredoxin Interacting Protein (TXNIP) methylation, diabetes and glucose level dysfunction. Methylation of TXNIP was inversely and intensely associated with HbA1c levels specifically related to diabetic patients with poor control of glucose levels. The authors concluded that hypomethylation of the TXNIP gene is related to type 2 DM. The inverse relationship between TXNIP methylation and HbA1c values suggests that TXNIP hypomethylation is a consequence of sustained hyperglycemia levels.
Carolina Soriano-Tárraga, PhD, the lead author of the study said, “The methylation of this gene could be used as an early biomarker of dysfunction in the control of glucose levels. We are currently studying the implications and specific role of this gene in diabetes. In the future it could provide a possible therapeutic target for treating diabetes or controlling glucose concentrations.” The study was published originally online on December 7, 2015, in the journal Human Molecular Genetics.
Related Links:
Hospital del Mar Medical Research Institute
Chemagen
Illumina Netherlands
Latest Clinical Chem. News
- New Clinical Chemistry Analyzer Designed to Meet Growing Demands of Modern Labs
- New Reference Measurement Procedure Standardizes Nucleic Acid Amplification Test Results
- Pen-Like Tool Quickly and Non-Invasively Detects Opioids from Skin
- Simple Urine Test Could Detect Multiple Cancers at Early Stage
- Earwax Test Accurately Detects Parkinson’s by Identifying Odor Molecules
- First-Of-Its-Kind Quantitative Method Assesses Opioid Exposure in Newborns
- Paper-Based Devices Outperform Existing Methods in Diagnosing Asymptomatic Malaria
- Simple Skin Test Could Revolutionize Diagnosis of Pediatric Eosinophilic Esophagitis
- Portable Diagnostic Tool Uses Bioluminescence to Detect Viruses at POC
- AI-Powered Lung Maturity Test Identifies Newborns at Higher Risk of Respiratory Distress
- AI-Powered Blood Test Accurately Detects Ovarian Cancer
- Automated Decentralized cfDNA NGS Assay Identifies Alterations in Advanced Solid Tumors
- Mass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication
- First Comprehensive Syphilis Test to Definitively Diagnose Active Infection In 10 Minutes
- Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse
- ‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
Channels
Clinical Chemistry
view channel
New Clinical Chemistry Analyzer Designed to Meet Growing Demands of Modern Labs
A new clinical chemistry analyzer is designed to provide outstanding performance and maximum efficiency, without compromising affordability, to meet the growing demands of modern laboratories.... Read more
New Reference Measurement Procedure Standardizes Nucleic Acid Amplification Test Results
Nucleic acid amplification tests (NAATs) play a key role in diagnosing a wide range of infectious diseases. These tests are generally known for their high sensitivity and specificity, and they can be developed... Read moreHematology
view channel
Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results
Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read moreImmunology
view channel
Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer
Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more
Groundbreaking Lateral Flow Test Quantifies Nucleosomes in Whole Venous Blood in Minutes
Diagnosing immune disruptions quickly and accurately is crucial in conditions such as sepsis, where timely intervention is critical for patient survival. Traditional testing methods can be slow, expensive,... Read moreMicrobiology
view channel
Viral Load Tests Can Help Predict Mpox Severity
Mpox is a viral infection that causes flu-like symptoms and a characteristic rash, which evolves significantly over time and varies between patients. The disease spreads mainly through direct contact with... Read more
Gut Microbiota Analysis Enables Early and Non-Invasive Detection of Gestational Diabetes
Gestational diabetes mellitus is a common metabolic disorder marked by abnormal glucose metabolism during pregnancy, typically emerging in the mid to late stages. It significantly heightens the risk of... Read morePathology
view channel
AI Accurately Predicts Genetic Mutations from Routine Pathology Slides for Faster Cancer Care
Current cancer treatment decisions are often guided by genetic testing, which can be expensive, time-consuming, and not always available at leading hospitals. For patients with lung adenocarcinoma, a critical... Read more
AI Tool Enhances Interpretation of Tissue Samples by Pathologists
Malignant melanoma, a form of skin cancer, is diagnosed by pathologists based on tissue samples. A crucial aspect of this process is estimating the presence of tumor-infiltrating lymphocytes (TILs), immune... Read more
AI-Assisted Technique Tracks Cells Damaged from Injury, Aging and Disease
Senescent cells, which stop growing and reproducing due to injury, aging, or disease, play a critical role in wound repair and aging-related diseases like cancer and heart disease. These cells, however,... Read more
Novel Fluorescent Probe Shows Potential in Precision Cancer Diagnostics and Fluorescence-Guided Surgery
Hepatocellular carcinoma (HCC), a common type of liver cancer, is difficult to diagnose early and accurately due to the limitations of current diagnostic methods. Glycans, carbohydrate structures present... Read moreTechnology
view channel
Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation
Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Ultra-Sensitive Biosensor Based on Light and AI Enables Early Cancer Diagnosis
Cancer diagnosis is often delayed due to the difficulty in detecting early-stage cancer markers. In particular, the concentration of methylated DNA in the bloodstream during the early stages of cancer... Read moreIndustry
view channel
Quanterix Completes Acquisition of Akoya Biosciences
Quanterix Corporation (Billerica, MA, USA) has completed its previously announced acquisition of Akoya Biosciences (Marlborough, MA, USA), paving the way for the creation of the first integrated solution... Read more
Lunit and Microsoft Collaborate to Advance AI-Driven Cancer Diagnosis
Lunit (Seoul, South Korea) and Microsoft (Redmond, WA, USA) have entered into a collaboration to accelerate the delivery of artificial intelligence (AI)-powered healthcare solutions. In conjunction with... Read more