We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Fungal Infection Identified by Pathogen Detection Array Technology

By LabMedica International staff writers
Posted on 09 Feb 2016
Print article
Image: Sporangiophores, columellae and primitive rhizoids of Rhizomucor spp., the zygomycetous fungus detected by the PathoChip, which has the ability to detect all known viruses, as well as a variety of bacteria, fungi, helminths, and protozoa (Photo courtesy of the University of Adelaide).
Image: Sporangiophores, columellae and primitive rhizoids of Rhizomucor spp., the zygomycetous fungus detected by the PathoChip, which has the ability to detect all known viruses, as well as a variety of bacteria, fungi, helminths, and protozoa (Photo courtesy of the University of Adelaide).
Image: Rhizomucor pusillus (Photo courtesy of the University of Adelaide).
Image: Rhizomucor pusillus (Photo courtesy of the University of Adelaide).
Patients who are undergoing treatment for diseases such as cancer often face the added challenge of a compromised immune system, which can be challenging to both of their condition and the drugs used to treat it, leaving them vulnerable to various opportunistic infections.

A novel investigational technology has been developed that can rapidly identify elusive microorganisms which are not only life-threatening, but those caused by rare organisms are extremely difficult to isolate and identify.

Scientists at the University of Pennsylvania (Philadelphia, PA, USA) utilized a pathogen array technology referred to as PathoChip, comprised of oligonucleotide probes that can detect all the sequenced viruses as well as known pathogenic bacteria, fungi and parasites and family-specific conserved probes, thus providing a means for detecting previously uncharacterized members of a family. The technology contains 60,000 probes that simultaneously test for all known viruses, as well as a variety of bacteria, fungi, helminths, and protozoa.

The investigators applied the PathoChip test to tissue samples of a patient with relapsed acute myelogenous leukemia (AML). The patient, a middle-aged man, had undergone chemotherapy for the cancer, a treatment that is well known to weaken the immune system, increasing susceptibility to infection. As a result, he developed an unknown fungal infection. The team rapidly identified a zygomycetous fungus, Rhizomucor, an otherwise challenge for the clinical laboratories, predominantly in the patient with acute myelogenous leukemia.

Erle Robertson, PhD, a professor and vice-chair for research in Otorhinolaryngology, said, “We've run many tests to see if we could identify pathogens in the laboratory, just to see if the PathoChip has efficacy in identifying a variety of organisms, and we were able to identify all infectious agents tested, but this was the first time we actually looked directly at a patient sample to identify a pathogenic agent. With this technology, out of 60,000 possibilities and probes that we used, in a little over 24 hours we were able to identify this particular fungi.” The study was published originally online on November 20, 2015, in the journal Cancer, Biology & Therapy.

Related Links:

University of Pennsylvania


New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The new ADLM guidance will help healthcare professionals navigate respiratory virus testing in a post-COVID world (Photo courtesy of 123RF)

New ADLM Guidance Provides Expert Recommendations on Clinical Testing For Respiratory Viral Infections

Respiratory tract infections, predominantly caused by viral pathogens, are a common reason for healthcare visits. Accurate and swift diagnosis of these infections is essential for optimal patient management.... Read more

Molecular Diagnostics

view channel
Image: The new tests seek to detect mutant DNA in blood samples, indicating the presence of cancer cells (Photo courtesy of Christian Stolte/Weill Cornell)

Advanced Liquid Biopsy Technology Detects Cancer Earlier Than Conventional Methods

Liquid biopsy technology has yet to fully deliver on its significant potential. Traditional methods have focused on a narrow range of cancer-associated mutations that are often present in such low quantities... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Industry

view channel
Image: For 46 years, Roche and Hitachi have collaborated to deliver innovative diagnostic solutions (Photo courtesy of Roche)

Roche and Hitachi High-Tech Extend 46-Year Partnership for Breakthroughs in Diagnostic Testing

Roche (Basel, Switzerland) and Hitachi High-Tech (Tokyo, Japan) have renewed their collaboration agreement, committing to a further 10 years of partnership. This extension brings together their long-standing... Read more
LGC Clinical Diagnostics