LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Fungal Infection Identified by Pathogen Detection Array Technology

By LabMedica International staff writers
Posted on 09 Feb 2016
Print article
Image: Sporangiophores, columellae and primitive rhizoids of Rhizomucor spp., the zygomycetous fungus detected by the PathoChip, which has the ability to detect all known viruses, as well as a variety of bacteria, fungi, helminths, and protozoa (Photo courtesy of the University of Adelaide).
Image: Sporangiophores, columellae and primitive rhizoids of Rhizomucor spp., the zygomycetous fungus detected by the PathoChip, which has the ability to detect all known viruses, as well as a variety of bacteria, fungi, helminths, and protozoa (Photo courtesy of the University of Adelaide).
Image: Rhizomucor pusillus (Photo courtesy of the University of Adelaide).
Image: Rhizomucor pusillus (Photo courtesy of the University of Adelaide).
Patients who are undergoing treatment for diseases such as cancer often face the added challenge of a compromised immune system, which can be challenging to both of their condition and the drugs used to treat it, leaving them vulnerable to various opportunistic infections.

A novel investigational technology has been developed that can rapidly identify elusive microorganisms which are not only life-threatening, but those caused by rare organisms are extremely difficult to isolate and identify.

Scientists at the University of Pennsylvania (Philadelphia, PA, USA) utilized a pathogen array technology referred to as PathoChip, comprised of oligonucleotide probes that can detect all the sequenced viruses as well as known pathogenic bacteria, fungi and parasites and family-specific conserved probes, thus providing a means for detecting previously uncharacterized members of a family. The technology contains 60,000 probes that simultaneously test for all known viruses, as well as a variety of bacteria, fungi, helminths, and protozoa.

The investigators applied the PathoChip test to tissue samples of a patient with relapsed acute myelogenous leukemia (AML). The patient, a middle-aged man, had undergone chemotherapy for the cancer, a treatment that is well known to weaken the immune system, increasing susceptibility to infection. As a result, he developed an unknown fungal infection. The team rapidly identified a zygomycetous fungus, Rhizomucor, an otherwise challenge for the clinical laboratories, predominantly in the patient with acute myelogenous leukemia.

Erle Robertson, PhD, a professor and vice-chair for research in Otorhinolaryngology, said, “We've run many tests to see if we could identify pathogens in the laboratory, just to see if the PathoChip has efficacy in identifying a variety of organisms, and we were able to identify all infectious agents tested, but this was the first time we actually looked directly at a patient sample to identify a pathogenic agent. With this technology, out of 60,000 possibilities and probes that we used, in a little over 24 hours we were able to identify this particular fungi.” The study was published originally online on November 20, 2015, in the journal Cancer, Biology & Therapy.

Related Links:

University of Pennsylvania


Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Binocular Laboratory LED Illuminated Microscope
HumaScope Classic LED
New
Immunofluorescence Analyzer
MPQuanti

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.