We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Early and Accurate Prediction of Leukemia Made Possible

By LabMedica International staff writers
Posted on 25 Jan 2016
Image: Bone marrow aspirate of acute myeloid leukemia: Azurophilic granularity can be seen in essentially all of the blasts and variability in nuclear size and contour is observable (Photo courtesy of Dr. John Lazarchick, MD).
Image: Bone marrow aspirate of acute myeloid leukemia: Azurophilic granularity can be seen in essentially all of the blasts and variability in nuclear size and contour is observable (Photo courtesy of Dr. John Lazarchick, MD).
Acute myeloid leukemia (AML) is the most common type of leukemia in adults and recent studies demonstrate that early and accurate prediction of this aggressive cancer is possible how it will develop in individuals.

Scientists have been able to fingerprint myelodysplastic syndromes (MDS), a state for blood cells that turns into AML cancer in approximately 30% of patients. The study demonstrates that early and accurate prediction of this aggressive cancer is possible.

Scientists at McMaster University (Hamilton, ON, Canada) collaborated with those at the University of Bologna (Italy) to perform a retrospective study on human blood samples that had been previously collected from patients with MDS, some of whom eventually developed AML. Gene expression analysis of patient blood samples was accurate in predicting which patients would develop AML and which would not.

The study revealed that removal of glycogen synthase kinase-3α (GSK-3α) and GSK-3β dependency leads to aggressive AML. Although GSK-3α deletion alone has no effect, GSK-3β deletion in hematopoietic stem cells (HSCs) resulted in a pre-neoplastic state consistent with human myelodysplastic syndromes (MDSs). Transcriptome and functional studies reveal that each GSK-3β and GSK-3α uniquely contributes to AML by affecting Wnt/Akt/mTOR signaling and metabolism, respectively. The molecular signature of HSCs deleted for GSK-3β provided a prognostic tool for disease progression and survival of MDS patients. The study revealed that GSK-3α- and GSK-3β-regulated pathways can be responsible for stepwise transition to MDS and subsequent AML, thereby providing potential therapeutic targets of disease evolution.

Mickie Bhatia, PhD, a professor and lead investigator, said, “This discovery improves our ability to identify which patients with MDS will develop AML. However, our next step is to go beyond better predictive measures for the development of a blood cancer, and use this predictive gene expression as a target for drugs to prevent AML from developing altogether. This will be part of a new era of genetic-based drug discovery.” The study was published on January 11, 2016, in the journal Cancer Cell.

Related Links:

McMaster University
University of Bologna 


Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gel Cards
DG Gel Cards
Human Estradiol Assay
Human Estradiol CLIA Kit

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more