LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Early and Accurate Prediction of Leukemia Made Possible

By LabMedica International staff writers
Posted on 25 Jan 2016
Print article
Image: Bone marrow aspirate of acute myeloid leukemia: Azurophilic granularity can be seen in essentially all of the blasts and variability in nuclear size and contour is observable (Photo courtesy of Dr. John Lazarchick, MD).
Image: Bone marrow aspirate of acute myeloid leukemia: Azurophilic granularity can be seen in essentially all of the blasts and variability in nuclear size and contour is observable (Photo courtesy of Dr. John Lazarchick, MD).
Acute myeloid leukemia (AML) is the most common type of leukemia in adults and recent studies demonstrate that early and accurate prediction of this aggressive cancer is possible how it will develop in individuals.

Scientists have been able to fingerprint myelodysplastic syndromes (MDS), a state for blood cells that turns into AML cancer in approximately 30% of patients. The study demonstrates that early and accurate prediction of this aggressive cancer is possible.

Scientists at McMaster University (Hamilton, ON, Canada) collaborated with those at the University of Bologna (Italy) to perform a retrospective study on human blood samples that had been previously collected from patients with MDS, some of whom eventually developed AML. Gene expression analysis of patient blood samples was accurate in predicting which patients would develop AML and which would not.

The study revealed that removal of glycogen synthase kinase-3α (GSK-3α) and GSK-3β dependency leads to aggressive AML. Although GSK-3α deletion alone has no effect, GSK-3β deletion in hematopoietic stem cells (HSCs) resulted in a pre-neoplastic state consistent with human myelodysplastic syndromes (MDSs). Transcriptome and functional studies reveal that each GSK-3β and GSK-3α uniquely contributes to AML by affecting Wnt/Akt/mTOR signaling and metabolism, respectively. The molecular signature of HSCs deleted for GSK-3β provided a prognostic tool for disease progression and survival of MDS patients. The study revealed that GSK-3α- and GSK-3β-regulated pathways can be responsible for stepwise transition to MDS and subsequent AML, thereby providing potential therapeutic targets of disease evolution.

Mickie Bhatia, PhD, a professor and lead investigator, said, “This discovery improves our ability to identify which patients with MDS will develop AML. However, our next step is to go beyond better predictive measures for the development of a blood cancer, and use this predictive gene expression as a target for drugs to prevent AML from developing altogether. This will be part of a new era of genetic-based drug discovery.” The study was published on January 11, 2016, in the journal Cancer Cell.

Related Links:

McMaster University
University of Bologna 


Gold Member
Rotavirus Test
Rotavirus Test - 30003 – 30073
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Anti-HHV-6 IgM Assay
anti-HHV-6 IgM ELISA (semiquant.)
New
TORCH Infections Test
TORCH Panel

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.