Endoscopic Samples Show Precancerous Genomic Changes in Barrett's Esophagus
| 
                        By LabMedica International staff writers Posted on 22 Jun 2015  | 
                    

Image: The Invitrogen Qubit Fluorometer for routine DNA, RNA, and protein quantitation (Photo courtesy of Life Technologies).
			
			Next-generation sequencing (NGS) has been used to detect genomic mutations in precancerous esophageal tissue, which may improve cancer surveillance and early detection in patients with Barrett's esophagus.
Barrett's esophagus (BE) develops in a subset of patients with gastroesophageal reflux disease (GERD) and can increase the risk of developing cancer of the esophagus and although periodic surveillance for cancer is recommended for BE patients; these examinations may fail to identify precancerous dysplasia and early cancers.
Scientists at Columbia University College of Physicians and Surgeons (New York, NY, USA) and their colleagues selected two groups of patients: 13 "non-progressors" who were patients with BE who never manifested dysplasia or esophageal adenocarcinoma (EAC) during at least two years of monitoring, and 15 "progressors" who were patients who developed high-grade dysplasia (HGD) or EAC, and control samples showing no evidence of Barrett's intestinal metaplasia. The investigators analyzed formalin-fixed, paraffin-embedded (FFPE) tissue samples tissue taken from esophageal biopsies or endoscopic mucosal resections.
DNA was extracted and quantitated by fluorometry with the Invitrogen Qubit fluorometer and the Invitrogen Quant-iT double-strand DNA BR Assay Kit (Life Technologies; Grand Island, NY, USA). Samples from some patients were sequenced in either Life Technologies Ion Torrent and/or MiSeq (Illumina, San Diego, CA, USA) platforms, or in parallel.
The team found that found that progressors had mutations in 75% (6/8) of cases compared to 0% in non-progressors. The tumor suppressor protein p53 (TP53) was the most commonly mutated gene in the BE progressor group. Mutations were also found in the adenomatous polyposis coli (APC) and cyclin-dependent kinase inhibitor 2A (CDKN2A) tumor suppressor genes. Next-generation sequencing from routine FFPE non-neoplastic Barrett’s esophagus samples can detect multiple mutations in minute areas of Barrett’s intestinal metaplasia (BIM) with high analytical sensitivity.
The authors concluded that that DNA from routine endoscopic FFPE samples of non-dysplastic BIM can be efficiently used to simultaneously detect multiple mutations by NGS with high analytical sensitivity, enabling the application of genomic testing of BE patients for improved HGD and EAC surveillance in clinical practice. Antonia R. Sepulveda, MD, PhD, Professor of Pathology and Cell Biology, and senior author of the study said, “The ability to detect mutations in non-neoplastic mucosa, quantitatively and with high detection sensitivity, makes it possible to use NGS mutational testing in the early detection and surveillance of patients who develop BE.” The study was published in the July 2015 issue of the Journal of Molecular Diagnostics.
Related Links:
Columbia University College of Physicians and Surgeons
Life Technologies
Illumina
		
			
			
		
        		        
		        Barrett's esophagus (BE) develops in a subset of patients with gastroesophageal reflux disease (GERD) and can increase the risk of developing cancer of the esophagus and although periodic surveillance for cancer is recommended for BE patients; these examinations may fail to identify precancerous dysplasia and early cancers.
Scientists at Columbia University College of Physicians and Surgeons (New York, NY, USA) and their colleagues selected two groups of patients: 13 "non-progressors" who were patients with BE who never manifested dysplasia or esophageal adenocarcinoma (EAC) during at least two years of monitoring, and 15 "progressors" who were patients who developed high-grade dysplasia (HGD) or EAC, and control samples showing no evidence of Barrett's intestinal metaplasia. The investigators analyzed formalin-fixed, paraffin-embedded (FFPE) tissue samples tissue taken from esophageal biopsies or endoscopic mucosal resections.
DNA was extracted and quantitated by fluorometry with the Invitrogen Qubit fluorometer and the Invitrogen Quant-iT double-strand DNA BR Assay Kit (Life Technologies; Grand Island, NY, USA). Samples from some patients were sequenced in either Life Technologies Ion Torrent and/or MiSeq (Illumina, San Diego, CA, USA) platforms, or in parallel.
The team found that found that progressors had mutations in 75% (6/8) of cases compared to 0% in non-progressors. The tumor suppressor protein p53 (TP53) was the most commonly mutated gene in the BE progressor group. Mutations were also found in the adenomatous polyposis coli (APC) and cyclin-dependent kinase inhibitor 2A (CDKN2A) tumor suppressor genes. Next-generation sequencing from routine FFPE non-neoplastic Barrett’s esophagus samples can detect multiple mutations in minute areas of Barrett’s intestinal metaplasia (BIM) with high analytical sensitivity.
The authors concluded that that DNA from routine endoscopic FFPE samples of non-dysplastic BIM can be efficiently used to simultaneously detect multiple mutations by NGS with high analytical sensitivity, enabling the application of genomic testing of BE patients for improved HGD and EAC surveillance in clinical practice. Antonia R. Sepulveda, MD, PhD, Professor of Pathology and Cell Biology, and senior author of the study said, “The ability to detect mutations in non-neoplastic mucosa, quantitatively and with high detection sensitivity, makes it possible to use NGS mutational testing in the early detection and surveillance of patients who develop BE.” The study was published in the July 2015 issue of the Journal of Molecular Diagnostics.
Related Links:
Columbia University College of Physicians and Surgeons
Life Technologies
Illumina
Latest Pathology News
- Tears Offer Noninvasive Alternative for Diagnosing Neurodegenerative Diseases
 - AI-Powered Method Combines Blood Data to Accurately Measure Biological Age
 - AI Tool Detects Cancer in Blood Samples In 10 Minutes
 - AI Pathology Analysis System Delivers Comprehensive Cancer Diagnosis
 - AI Improves Cervical Cancer Screening in Low-Resource Settings
 - New Multi-Omics Tool Illuminates Cancer Progression
 - New Technique Detects Genetic Mutations in Brain Tumors During Surgery within 25 Minutes
 - New Imaging Tech to Improve Diagnosis and Treatment of Skin Cancers
 - Serially Testing Brain Tumor Samples Reveals Treatment Response in Glioblastoma Patients
 - High-Accuracy Tumor Detection Method Offers Real-Time Surgical Guidance
 - AI Tool Detects Hidden Warning Signs of Disease Inside Single Cells
 - Automated Tool Detects Early Warning Signs of Breast Cancer
 - New Software Tool Improves Analysis of Complex Spatial Data from Tissues
 - AI Tool Helps Surgeons Distinguish Aggressive Glioblastoma from Other Brain Cancers in Real-Time
 - New Tool Could Revolutionize Acute Leukemia Diagnosis
 - New Microscope Promises to Speed Up Medical Diagnostics
 
Channels
Clinical Chemistry
view channel
                    VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read more
                    Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
Kidney disease is typically diagnosed through blood or urine tests, often when patients present with symptoms such as blood in urine, shortness of breath, or weight loss. While these tests are common,... Read moreHematology
view channel
                    Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
                    Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more
                    Platelets Could Improve Early and Minimally Invasive Detection of Cancer
Platelets are widely recognized for their role in blood clotting and scab formation, but they also play a crucial role in immune defense by detecting pathogens and recruiting immune cells.... Read more
                    Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment
Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read moreImmunology
view channel
                    Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
Immunotherapy has revolutionized cancer care by harnessing the immune system to fight tumors, yet predicting who will benefit remains a major challenge. Many patients undergo costly and taxing treatment... Read more
                    Signature Genes Predict T-Cell Expansion in Cancer Immunotherapy
Modern cancer immunotherapies rely on the ability of CD8⁺ T cells to rapidly multiply within tumors, generating the immune force needed to eliminate cancer cells. However, the biological triggers behind... Read moreMicrobiology
view channel
                    Fast Noninvasive Bedside Test Uses Sugar Fingerprint to Detect Fungal Infections
Candida bloodstream infections are a growing global health threat, causing an estimated 6 million cases and 3.8 million deaths annually. Hospitals are particularly vulnerable, as weakened patients after... Read more
                    Rapid Sepsis Diagnostic Device to Enable Personalized Critical Care for ICU Patients
Sepsis is a life-threatening condition that occurs when the body’s response to infection spirals out of control, damaging organs and leading to critical illness. Patients often arrive at intensive care... Read morePathology
view channel
                    Tears Offer Noninvasive Alternative for Diagnosing Neurodegenerative Diseases
Diagnosing and monitoring eye and neurodegenerative diseases often requires invasive procedures to access ocular fluids. Ocular fluids like aqueous humor and vitreous humor contain valuable molecular information... Read more
                    AI-Powered Method Combines Blood Data to Accurately Measure Biological Age
Chronological age tells us how many years we’ve lived, but not how quickly our bodies are ageing. Some people stay healthy well into their 80s or 90s, while others experience decline much earlier.... Read moreTechnology
view channel
                    Viral Biosensor Test Simultaneously Detects Hepatitis and HIV
Globally, over 300 million people live with Hepatitis B and C, and 40 million with HIV, according to WHO estimates. Diagnosing bloodborne viruses such as HIV and Hepatitis B and C remains challenging in... Read more
                    Acoustofluidic Device to Transform Point-Of-Care sEV-Based Diagnostics
Rapid and sensitive detection of small extracellular vesicles (sEVs)—key biomarkers in cancer and organ health monitoring—remains challenging due to the need for multiple preprocessing steps and bulky... Read moreIndustry
view channel
                    Advanced Instruments Merged Under Nova Biomedical Name
Advanced Instruments (Norwood, MA, USA) and Nova Biomedical (Waltham, MA, USA) are now officially doing business under a single, unified brand. This transformation is expected to deliver greater value... Read more
                    



 assay.jpg)
								

								
								
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    