Endoscopic Samples Show Precancerous Genomic Changes in Barrett's Esophagus
|
By LabMedica International staff writers Posted on 22 Jun 2015 |

Image: The Invitrogen Qubit Fluorometer for routine DNA, RNA, and protein quantitation (Photo courtesy of Life Technologies).
Next-generation sequencing (NGS) has been used to detect genomic mutations in precancerous esophageal tissue, which may improve cancer surveillance and early detection in patients with Barrett's esophagus.
Barrett's esophagus (BE) develops in a subset of patients with gastroesophageal reflux disease (GERD) and can increase the risk of developing cancer of the esophagus and although periodic surveillance for cancer is recommended for BE patients; these examinations may fail to identify precancerous dysplasia and early cancers.
Scientists at Columbia University College of Physicians and Surgeons (New York, NY, USA) and their colleagues selected two groups of patients: 13 "non-progressors" who were patients with BE who never manifested dysplasia or esophageal adenocarcinoma (EAC) during at least two years of monitoring, and 15 "progressors" who were patients who developed high-grade dysplasia (HGD) or EAC, and control samples showing no evidence of Barrett's intestinal metaplasia. The investigators analyzed formalin-fixed, paraffin-embedded (FFPE) tissue samples tissue taken from esophageal biopsies or endoscopic mucosal resections.
DNA was extracted and quantitated by fluorometry with the Invitrogen Qubit fluorometer and the Invitrogen Quant-iT double-strand DNA BR Assay Kit (Life Technologies; Grand Island, NY, USA). Samples from some patients were sequenced in either Life Technologies Ion Torrent and/or MiSeq (Illumina, San Diego, CA, USA) platforms, or in parallel.
The team found that found that progressors had mutations in 75% (6/8) of cases compared to 0% in non-progressors. The tumor suppressor protein p53 (TP53) was the most commonly mutated gene in the BE progressor group. Mutations were also found in the adenomatous polyposis coli (APC) and cyclin-dependent kinase inhibitor 2A (CDKN2A) tumor suppressor genes. Next-generation sequencing from routine FFPE non-neoplastic Barrett’s esophagus samples can detect multiple mutations in minute areas of Barrett’s intestinal metaplasia (BIM) with high analytical sensitivity.
The authors concluded that that DNA from routine endoscopic FFPE samples of non-dysplastic BIM can be efficiently used to simultaneously detect multiple mutations by NGS with high analytical sensitivity, enabling the application of genomic testing of BE patients for improved HGD and EAC surveillance in clinical practice. Antonia R. Sepulveda, MD, PhD, Professor of Pathology and Cell Biology, and senior author of the study said, “The ability to detect mutations in non-neoplastic mucosa, quantitatively and with high detection sensitivity, makes it possible to use NGS mutational testing in the early detection and surveillance of patients who develop BE.” The study was published in the July 2015 issue of the Journal of Molecular Diagnostics.
Related Links:
Columbia University College of Physicians and Surgeons
Life Technologies
Illumina
Barrett's esophagus (BE) develops in a subset of patients with gastroesophageal reflux disease (GERD) and can increase the risk of developing cancer of the esophagus and although periodic surveillance for cancer is recommended for BE patients; these examinations may fail to identify precancerous dysplasia and early cancers.
Scientists at Columbia University College of Physicians and Surgeons (New York, NY, USA) and their colleagues selected two groups of patients: 13 "non-progressors" who were patients with BE who never manifested dysplasia or esophageal adenocarcinoma (EAC) during at least two years of monitoring, and 15 "progressors" who were patients who developed high-grade dysplasia (HGD) or EAC, and control samples showing no evidence of Barrett's intestinal metaplasia. The investigators analyzed formalin-fixed, paraffin-embedded (FFPE) tissue samples tissue taken from esophageal biopsies or endoscopic mucosal resections.
DNA was extracted and quantitated by fluorometry with the Invitrogen Qubit fluorometer and the Invitrogen Quant-iT double-strand DNA BR Assay Kit (Life Technologies; Grand Island, NY, USA). Samples from some patients were sequenced in either Life Technologies Ion Torrent and/or MiSeq (Illumina, San Diego, CA, USA) platforms, or in parallel.
The team found that found that progressors had mutations in 75% (6/8) of cases compared to 0% in non-progressors. The tumor suppressor protein p53 (TP53) was the most commonly mutated gene in the BE progressor group. Mutations were also found in the adenomatous polyposis coli (APC) and cyclin-dependent kinase inhibitor 2A (CDKN2A) tumor suppressor genes. Next-generation sequencing from routine FFPE non-neoplastic Barrett’s esophagus samples can detect multiple mutations in minute areas of Barrett’s intestinal metaplasia (BIM) with high analytical sensitivity.
The authors concluded that that DNA from routine endoscopic FFPE samples of non-dysplastic BIM can be efficiently used to simultaneously detect multiple mutations by NGS with high analytical sensitivity, enabling the application of genomic testing of BE patients for improved HGD and EAC surveillance in clinical practice. Antonia R. Sepulveda, MD, PhD, Professor of Pathology and Cell Biology, and senior author of the study said, “The ability to detect mutations in non-neoplastic mucosa, quantitatively and with high detection sensitivity, makes it possible to use NGS mutational testing in the early detection and surveillance of patients who develop BE.” The study was published in the July 2015 issue of the Journal of Molecular Diagnostics.
Related Links:
Columbia University College of Physicians and Surgeons
Life Technologies
Illumina
Latest Pathology News
- AI Tool Improves Accuracy of Skin Cancer Detection
- Highly Sensitive Imaging Technique Detects Myelin Damage
- 3D Genome Mapping Tool to Improve Diagnosis and Treatment of Genetic Diseases
- New Molecular Analysis Tool to Improve Disease Diagnosis
- Tears Offer Noninvasive Alternative for Diagnosing Neurodegenerative Diseases
- AI-Powered Method Combines Blood Data to Accurately Measure Biological Age
- AI Tool Detects Cancer in Blood Samples In 10 Minutes
- AI Pathology Analysis System Delivers Comprehensive Cancer Diagnosis
- AI Improves Cervical Cancer Screening in Low-Resource Settings
- New Multi-Omics Tool Illuminates Cancer Progression
- New Technique Detects Genetic Mutations in Brain Tumors During Surgery within 25 Minutes
- New Imaging Tech to Improve Diagnosis and Treatment of Skin Cancers
- Serially Testing Brain Tumor Samples Reveals Treatment Response in Glioblastoma Patients
- High-Accuracy Tumor Detection Method Offers Real-Time Surgical Guidance
- AI Tool Detects Hidden Warning Signs of Disease Inside Single Cells
- Automated Tool Detects Early Warning Signs of Breast Cancer
Channels
Clinical Chemistry
view channel
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read more
Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
Kidney disease is typically diagnosed through blood or urine tests, often when patients present with symptoms such as blood in urine, shortness of breath, or weight loss. While these tests are common,... Read moreHematology
view channel
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more
Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read moreImmunology
view channel
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read more
Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
Immunotherapy has revolutionized cancer care by harnessing the immune system to fight tumors, yet predicting who will benefit remains a major challenge. Many patients undergo costly and taxing treatment... Read moreMicrobiology
view channel
15-Minute Blood Test Diagnoses Life-Threatening Infections in Children
Distinguishing minor childhood illnesses from potentially life-threatening infections such as sepsis or meningitis remains a major challenge in emergency care. Traditional tests can take hours, leaving... Read more
High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read morePathology
view channel
AI Tool Improves Accuracy of Skin Cancer Detection
Diagnosing melanoma accurately in people with darker skin remains a longstanding challenge. Many existing artificial intelligence (AI) tools detect skin cancer more reliably in lighter skin tones, often... Read more
Highly Sensitive Imaging Technique Detects Myelin Damage
Damage to myelin—the insulating layer that helps brain cells function efficiently—is a hallmark of many neurodegenerative diseases, age-related decline, and traumatic injuries. However, studying this damage... Read moreTechnology
view channel
AI-Powered Biosensor Technology to Enable Breath Test for Lung Cancer Detection
Detecting lung cancer early remains one of the biggest challenges in oncology, largely because current tools are invasive, expensive, or unable to identify the disease in its earliest phases.... Read more
AI Model Achieves Breakthrough Accuracy in Ovarian Cancer Detection
Early diagnosis of ovarian cancer remains one of the toughest challenges in women’s health. Traditional tools such as the Risk of Ovarian Malignancy Algorithm (ROMA) can struggle to distinguish between... Read more
Portable Biosensor Diagnoses Psychiatric Disorders Using Saliva Samples
Early diagnosis of psychiatric disorders such as depression, schizophrenia, and bipolar disorder remains one of medicine’s most pressing challenges. Current diagnostic methods rely heavily on clinical... Read more
Cell-Sorting Device Uses Electromagnetic Levitation to Precisely Direct Cell Movement
Sorting different cell types—such as cancerous versus healthy or live versus dead cells—is a critical task in biology and medicine. However, conventional methods often require labeling, chemical exposure,... Read moreIndustry
view channel
Co-Diagnostics Forms New Business Unit to Develop AI-Powered Diagnostics
Co-Diagnostics, Inc. (Salt Lake City, UT, USA) has formed a new artificial intelligence (AI) business unit to integrate the company's existing and planned AI applications into its Co-Dx Primer Ai platform.... Read more








