Protein Biomarker Signals More Aggressive Prostate Cancer
By LabMedica International staff writers Posted on 05 May 2015 |
Image: The FluoView 500 Laser Scanning Confocal Microscope (Photo courtesy of Olympus Inc.).
Prostate cancer (PCa), the most common male malignancy, is frequently associated with bone metastases and a major challenge for treatment is to identify factors controlling tumor growth and metastasis.
The metastatic process begins in the primary tumor with activation of genes that promote angiogenesis, the development of new blood vessels, tumor invasion and migration leading to colonization of peripheral tissues including bone.
Scientists at the University of Michigan (Ann Arbor, MI, USA) and their Italian colleagues investigated whether adding a phosphate group, a process called phosphorylation, to the protein Runt-related transcription factor 2 (Runx2), changes its structure to activate specific genes in both bone and prostate cancer cells, but with vastly different results. Bone cells need Runx2 and the newly roused genes to make healthy bone. However, in prostate cancer cells, Runx2 triggered genes that fuel tumor growth and metastasis. They analyzed tissue samples from 129 patients with prostate cancer.
The team used various techniques in the study including Western blot analysis and immunofluorescence, transient transfections, luciferase reporter assays and virus transduction, cell migration and cell invasion assays, and immunohistochemistry. Fluorescence was detected using an Olympus FluoView 500 Laser Scanning Confocal Microscope (Olympus Inc., Waltham, MA, USA). Tissue samples from a total of 129 Caucasian patients with prostate disease were used to construct tissue microarrays.
The investigators found little or no Runx2 phosphorylation in normal prostate, benign prostate or prostatitis, which suggests that Runx2 phosphorylation is closely associated with the more aggressive forms of prostate cancer. The next step is to establish an actual cause-effect relationship between Runx2 phosphorylation and prostate cancer. Renny T. Franceschi, PhD, the senior author of the study said, “If this biomarker does indeed control the growth of prostate cells, it's a new signal that's not been seen before and could provide a potential new drug target for prostate cancer. It could also be a potential biomarker to discriminate between fast and slow growing tumors.” The study was published on April 13, 2015, in the journal Oncogene.
Related Links:
University of Michigan
Olympus Inc.
The metastatic process begins in the primary tumor with activation of genes that promote angiogenesis, the development of new blood vessels, tumor invasion and migration leading to colonization of peripheral tissues including bone.
Scientists at the University of Michigan (Ann Arbor, MI, USA) and their Italian colleagues investigated whether adding a phosphate group, a process called phosphorylation, to the protein Runt-related transcription factor 2 (Runx2), changes its structure to activate specific genes in both bone and prostate cancer cells, but with vastly different results. Bone cells need Runx2 and the newly roused genes to make healthy bone. However, in prostate cancer cells, Runx2 triggered genes that fuel tumor growth and metastasis. They analyzed tissue samples from 129 patients with prostate cancer.
The team used various techniques in the study including Western blot analysis and immunofluorescence, transient transfections, luciferase reporter assays and virus transduction, cell migration and cell invasion assays, and immunohistochemistry. Fluorescence was detected using an Olympus FluoView 500 Laser Scanning Confocal Microscope (Olympus Inc., Waltham, MA, USA). Tissue samples from a total of 129 Caucasian patients with prostate disease were used to construct tissue microarrays.
The investigators found little or no Runx2 phosphorylation in normal prostate, benign prostate or prostatitis, which suggests that Runx2 phosphorylation is closely associated with the more aggressive forms of prostate cancer. The next step is to establish an actual cause-effect relationship between Runx2 phosphorylation and prostate cancer. Renny T. Franceschi, PhD, the senior author of the study said, “If this biomarker does indeed control the growth of prostate cells, it's a new signal that's not been seen before and could provide a potential new drug target for prostate cancer. It could also be a potential biomarker to discriminate between fast and slow growing tumors.” The study was published on April 13, 2015, in the journal Oncogene.
Related Links:
University of Michigan
Olympus Inc.
Latest Pathology News
- AI Tool Uses Imaging Data to Detect Less Frequent GI Diseases
- AI-Based Method Shows Promise for Pathological Diagnosis of Hereditary Kidney Diseases
- New Imaging Method Opens Door to Precision Diagnostics for Head and Neck Cancers
- Faster Measurement of Vibrational Fingerprint of Molecules to Advance Biomedical Diagnostics
- Clinical Antibody Test to Quickly Detect Even Low Levels of Common Parasitic Infection
- Pioneering Microscopy Technique Improves Diagnosis of Glioblastoma Brain Tumors
- AI-Based Breast Cancer Test Uses Routine Digital Histopathology Images for Risk Stratification
- AI Model Identifies Sex-Specific Risks Associated with Brain Tumors
- Breakthrough Virus Detection Technology Combines Confocal Fluorescence Microscopy with Microfluidic Laminar Flow
- AI Technology Accurately Predicts Breast Cancer Risk Via ‘Zombie Cells’
- Liquid Biopsy Solution Enables Non-Invasive Sample Collection and Direct Cell-Free DNA Stabilization from Urine
- Innovative AI Tool Uses Digitized Whole-Slide Images for Intermediate-Risk Prostate Cancer Management
- AI-Based Tissue Staining Detects Amyloid Deposits Without Chemical Stains or Polarization Microscopy
- Super-Resolution Imaging Detects Parkinson's 20 Years Before First Motor Symptoms Appear
- New Technology for Sampling Body Liquids in Confined Spaces to Enable Early Cancer Detection
- New Technology Holistically Images Deep Living Tissue for The First Time