LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

A First – Smartphone Diagnostic Device Replicates Quality of Lab Blood Test

By LabMedica International staff writers
Posted on 09 Feb 2015
Image: Newly developed diagnostic smartphone accessory device successfully performed point-of-care HIV and syphilis tests in Rwanda from finger-prick whole blood in 15 minutes, operated by healthcare workers easily trained via a software app (Photo courtesy of Samiksha Nayak for Columbia Engineering).
Image: Newly developed diagnostic smartphone accessory device successfully performed point-of-care HIV and syphilis tests in Rwanda from finger-prick whole blood in 15 minutes, operated by healthcare workers easily trained via a software app (Photo courtesy of Samiksha Nayak for Columbia Engineering).
Researchers have developed a hand-held smartphone accessory that can perform a low-cost, point-of-care (POC), lab-quality test that simultaneously detects 3 infectious disease markers from a single finger-prick blood sample in only 15 minutes. The device can also be further developed to test for additional biomarkers.

In a multi-institutional collaboration, the team of researchers, led by Samuel K. Sia, associate professor of biomedical engineering at Columbia Engineering (New York, NY, USA), developed and field-tested the miniature device that, for the first time, replicates all mechanical, optical, and electronic functions of a lab-based blood test. Specifically, it performs an enzyme-linked immunosorbent assay (ELISA), without requiring stored energy as all necessary power is drawn from the smartphone. It also performs a triplexed immunoassay not currently available in a single test format: HIV antibody, treponemal-specific antibody for syphilis, and non-treponemal antibody for active syphilis infection.

Prof. Sia’s innovative accessory (or dongle) was recently piloted by healthcare workers in Rwanda, who trained via a software app then tested 96 patients from prevention-of-mother-to-child-transmission clinics or voluntary counseling and testing centers.

“Our work shows that a full laboratory-quality immunoassay can be run on a smartphone accessory,” said Prof. Sia, “Coupling microfluidics with recent advances in consumer electronics can make certain lab-based diagnostics accessible to almost any population with access to smartphones. This kind of capability can transform how health care services are delivered around the world.”

Prof. Sia’s team built upon their previous work in miniaturizing diagnostics hardware for rapid POC diagnosis of HIV, syphilis, and other sexually transmitted diseases. “We know that early diagnosis and treatment in pregnant mothers can greatly reduce adverse consequences to both mothers and their babies,” Sia notes. The team developed the dongle to be small and light enough to fit into one hand, and to run assays on disposable plastic cassettes with pre-loaded reagents, where disease-specific zones provide an objective read-out, much like an ELISA assay.

Prof. Sia estimates the dongle will have a manufacturing cost of USD 34, much lower than the USD 18,450 that typical ELISA equipment runs.

The team made two main innovations to achieve low power consumption, a must in places without dependable electricity. They eliminated the power-consuming electrical pump by using a “one-push vacuum,” where a user mechanically activates a negative-pressure chamber to move a sequence of reagents pre-stored on a cassette. The process is durable, requires little user training, and needs no maintenance or additional manufacturing. The team was able to implement a second innovation to remove the need for a battery by using the audio jack for transmitting power as well as for data transmission. And, because audio jacks are standardized among smartphones, the dongle can be attached to any compatible device (including iPhones and Android phones) in a simple plug-and-play manner.

During the field testing in Rwanda, healthcare workers were given 30 minutes of training, which included a user-friendly interface, step-by-step pictorial directions, built-in timers to alert to next steps, and records of test results for later review.

The work, by Laksanasopin T, Guo TW, et al., was published February 4, 2015, in the journal Science Translational Medicine.

Related Links:

Columbia Engineering 


Gold Member
Blood Gas Analyzer
Stat Profile pHOx
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more