A First – Smartphone Diagnostic Device Replicates Quality of Lab Blood Test
By LabMedica International staff writers Posted on 09 Feb 2015 |

Image: Newly developed diagnostic smartphone accessory device successfully performed point-of-care HIV and syphilis tests in Rwanda from finger-prick whole blood in 15 minutes, operated by healthcare workers easily trained via a software app (Photo courtesy of Samiksha Nayak for Columbia Engineering).
Researchers have developed a hand-held smartphone accessory that can perform a low-cost, point-of-care (POC), lab-quality test that simultaneously detects 3 infectious disease markers from a single finger-prick blood sample in only 15 minutes. The device can also be further developed to test for additional biomarkers.
In a multi-institutional collaboration, the team of researchers, led by Samuel K. Sia, associate professor of biomedical engineering at Columbia Engineering (New York, NY, USA), developed and field-tested the miniature device that, for the first time, replicates all mechanical, optical, and electronic functions of a lab-based blood test. Specifically, it performs an enzyme-linked immunosorbent assay (ELISA), without requiring stored energy as all necessary power is drawn from the smartphone. It also performs a triplexed immunoassay not currently available in a single test format: HIV antibody, treponemal-specific antibody for syphilis, and non-treponemal antibody for active syphilis infection.
Prof. Sia’s innovative accessory (or dongle) was recently piloted by healthcare workers in Rwanda, who trained via a software app then tested 96 patients from prevention-of-mother-to-child-transmission clinics or voluntary counseling and testing centers.
“Our work shows that a full laboratory-quality immunoassay can be run on a smartphone accessory,” said Prof. Sia, “Coupling microfluidics with recent advances in consumer electronics can make certain lab-based diagnostics accessible to almost any population with access to smartphones. This kind of capability can transform how health care services are delivered around the world.”
Prof. Sia’s team built upon their previous work in miniaturizing diagnostics hardware for rapid POC diagnosis of HIV, syphilis, and other sexually transmitted diseases. “We know that early diagnosis and treatment in pregnant mothers can greatly reduce adverse consequences to both mothers and their babies,” Sia notes. The team developed the dongle to be small and light enough to fit into one hand, and to run assays on disposable plastic cassettes with pre-loaded reagents, where disease-specific zones provide an objective read-out, much like an ELISA assay.
Prof. Sia estimates the dongle will have a manufacturing cost of USD 34, much lower than the USD 18,450 that typical ELISA equipment runs.
The team made two main innovations to achieve low power consumption, a must in places without dependable electricity. They eliminated the power-consuming electrical pump by using a “one-push vacuum,” where a user mechanically activates a negative-pressure chamber to move a sequence of reagents pre-stored on a cassette. The process is durable, requires little user training, and needs no maintenance or additional manufacturing. The team was able to implement a second innovation to remove the need for a battery by using the audio jack for transmitting power as well as for data transmission. And, because audio jacks are standardized among smartphones, the dongle can be attached to any compatible device (including iPhones and Android phones) in a simple plug-and-play manner.
During the field testing in Rwanda, healthcare workers were given 30 minutes of training, which included a user-friendly interface, step-by-step pictorial directions, built-in timers to alert to next steps, and records of test results for later review.
The work, by Laksanasopin T, Guo TW, et al., was published February 4, 2015, in the journal Science Translational Medicine.
Related Links:
Columbia Engineering
In a multi-institutional collaboration, the team of researchers, led by Samuel K. Sia, associate professor of biomedical engineering at Columbia Engineering (New York, NY, USA), developed and field-tested the miniature device that, for the first time, replicates all mechanical, optical, and electronic functions of a lab-based blood test. Specifically, it performs an enzyme-linked immunosorbent assay (ELISA), without requiring stored energy as all necessary power is drawn from the smartphone. It also performs a triplexed immunoassay not currently available in a single test format: HIV antibody, treponemal-specific antibody for syphilis, and non-treponemal antibody for active syphilis infection.
Prof. Sia’s innovative accessory (or dongle) was recently piloted by healthcare workers in Rwanda, who trained via a software app then tested 96 patients from prevention-of-mother-to-child-transmission clinics or voluntary counseling and testing centers.
“Our work shows that a full laboratory-quality immunoassay can be run on a smartphone accessory,” said Prof. Sia, “Coupling microfluidics with recent advances in consumer electronics can make certain lab-based diagnostics accessible to almost any population with access to smartphones. This kind of capability can transform how health care services are delivered around the world.”
Prof. Sia’s team built upon their previous work in miniaturizing diagnostics hardware for rapid POC diagnosis of HIV, syphilis, and other sexually transmitted diseases. “We know that early diagnosis and treatment in pregnant mothers can greatly reduce adverse consequences to both mothers and their babies,” Sia notes. The team developed the dongle to be small and light enough to fit into one hand, and to run assays on disposable plastic cassettes with pre-loaded reagents, where disease-specific zones provide an objective read-out, much like an ELISA assay.
Prof. Sia estimates the dongle will have a manufacturing cost of USD 34, much lower than the USD 18,450 that typical ELISA equipment runs.
The team made two main innovations to achieve low power consumption, a must in places without dependable electricity. They eliminated the power-consuming electrical pump by using a “one-push vacuum,” where a user mechanically activates a negative-pressure chamber to move a sequence of reagents pre-stored on a cassette. The process is durable, requires little user training, and needs no maintenance or additional manufacturing. The team was able to implement a second innovation to remove the need for a battery by using the audio jack for transmitting power as well as for data transmission. And, because audio jacks are standardized among smartphones, the dongle can be attached to any compatible device (including iPhones and Android phones) in a simple plug-and-play manner.
During the field testing in Rwanda, healthcare workers were given 30 minutes of training, which included a user-friendly interface, step-by-step pictorial directions, built-in timers to alert to next steps, and records of test results for later review.
The work, by Laksanasopin T, Guo TW, et al., was published February 4, 2015, in the journal Science Translational Medicine.
Related Links:
Columbia Engineering
Latest Immunology News
- Blood Test Detects Organ Rejection in Heart Transplant Patients
- Liquid Biopsy Approach to Transform Diagnosis, Monitoring and Treatment of Lung Cancer
- Computational Tool Exposes Hidden Cancer DNA Changes Influencing Treatment Resistance
- New Tool Detects Breast Cancer Relapses Five Years in Advance
- T Cells in Blood Can Detect Parkinson's Years Before Diagnosis
- POC Diagnostic Platform Performs Immune Analysis Using One Drop of Fingertip Blood
- Treatment Switching Guided by Liquid Biopsy Blood Tests Improves Outcomes for Breast Cancer Patients
- First-Of-Its-Kind Device Profiles Newborns' Immune Function Using Single Blood Drop
- Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
- Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
- Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions
- Cerebrospinal Fluid Test Predicts Dangerous Side Effect of Cancer Treatment
- New Test Measures Preterm Infant Immunity Using Only Two Drops of Blood
- Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer
- Novel Analytical Method Tracks Progression of Autoimmune Diseases
Channels
Clinical Chemistry
view channel
New Clinical Chemistry Analyzer Designed to Meet Growing Demands of Modern Labs
A new clinical chemistry analyzer is designed to provide outstanding performance and maximum efficiency, without compromising affordability, to meet the growing demands of modern laboratories.... Read more
New Reference Measurement Procedure Standardizes Nucleic Acid Amplification Test Results
Nucleic acid amplification tests (NAATs) play a key role in diagnosing a wide range of infectious diseases. These tests are generally known for their high sensitivity and specificity, and they can be developed... Read moreMolecular Diagnostics
view channel
RNA-Seq Based Diagnostic Test Enhances Diagnostic Accuracy of Pediatric Leukemia
A new unique test is set to reshape the way Acute Lymphoblastic Leukemia (BCP-ALL) samples can be analyzed. Qlucore (Lund, Sweden) has launched the first CE-marked RNA-seq based diagnostic test for pediatric... Read more
New Technique for Measuring Acidic Glycan in Blood Simplifies Schizophrenia Diagnosis
Polysialic acid is a unique acidic glycan predominantly found in brain regions associated with memory and emotion, but it is also present in the bloodstream. Research has shown that blood levels of polysialic... Read moreHematology
view channel
Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results
Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read moreImmunology
view channel
Blood Test Detects Organ Rejection in Heart Transplant Patients
Following a heart transplant, patients are required to undergo surgical biopsies so that physicians can assess the possibility of organ rejection. Rejection happens when the recipient’s immune system identifies... Read more
Liquid Biopsy Approach to Transform Diagnosis, Monitoring and Treatment of Lung Cancer
Lung cancer continues to be a major contributor to cancer-related deaths globally, with its biological complexity and diverse regulatory processes making diagnosis and treatment particularly difficult.... Read more
Computational Tool Exposes Hidden Cancer DNA Changes Influencing Treatment Resistance
Structural changes in tumor DNA are among the most damaging genetic alterations in cancer, yet they often go undetected, particularly when tissue samples are degraded or of low quality. These hidden genomic... Read moreMicrobiology
view channel
Viral Load Tests Can Help Predict Mpox Severity
Mpox is a viral infection that causes flu-like symptoms and a characteristic rash, which evolves significantly over time and varies between patients. The disease spreads mainly through direct contact with... Read more
Gut Microbiota Analysis Enables Early and Non-Invasive Detection of Gestational Diabetes
Gestational diabetes mellitus is a common metabolic disorder marked by abnormal glucose metabolism during pregnancy, typically emerging in the mid to late stages. It significantly heightens the risk of... Read morePathology
view channel
AI Performs Virtual Tissue Staining at Super-Resolution
Conventional histopathology, essential for diagnosing various diseases, typically involves chemically staining tissue samples to reveal cellular structures under a microscope. This process, known as “histochemical... Read more
AI-Driven Preliminary Testing for Pancreatic Cancer Enhances Prognosis
Pancreatic cancer poses a major global health threat due to its high mortality rate, with 467,409 deaths and 510,992 new cases reported worldwide in 2022. Often referred to as the "king" of all cancers,... Read more
Cancer Chip Accurately Predicts Patient-Specific Chemotherapy Response
Esophageal adenocarcinoma (EAC), one of the two primary types of esophageal cancer, ranks as the sixth leading cause of cancer-related deaths worldwide and currently lacks effective targeted therapies.... Read more
Clinical AI Solution for Automatic Breast Cancer Grading Improves Diagnostic Accuracy
Labs that use traditional image analysis methods often suffer from bottlenecks and delays. By digitizing their pathology practices, labs can streamline their work, allowing them to take on larger caseloads... Read moreIndustry
view channel
Lunit and Microsoft Collaborate to Advance AI-Driven Cancer Diagnosis
Lunit (Seoul, South Korea) and Microsoft (Redmond, WA, USA) have entered into a collaboration to accelerate the delivery of artificial intelligence (AI)-powered healthcare solutions. In conjunction with... Read more