We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

LDL Particle Number Measured Using NMR Clinical Analyzer

By LabMedica International staff writers
Posted on 25 Aug 2014
Print article
Image: The Vantera Clinical Analyzer offers the technology that has the ability to directly enumerate low-density lipoprotein (LDL) particle numbers (Photo courtesy of LipoScience).
Image: The Vantera Clinical Analyzer offers the technology that has the ability to directly enumerate low-density lipoprotein (LDL) particle numbers (Photo courtesy of LipoScience).
Fully-automated high-throughput nuclear magnetic resonance (NMR) spectroscopy has been developed to enable measurements in a clinical laboratory setting.

NMR-measured low-density lipoprotein particle number (LDL-P) has been shown to be more strongly associated with cardiovascular disease outcomes than LDL cholesterol (LDL-C) in individuals for whom these alternate measures of LDL are discordant.

Scientists at LipoScience Inc. (Raleigh, NC, USA) purchased serum pools and controls from Solomon Park Research Laboratories (Kirkland, WA, USA). Controls were prepared by identifying serum samples with high and low lipoprotein ranges. Additional serum pools were prepared in-house from donor subjects identified at LipoScience or Mayo Clinic (Rochester, MN, USA). NMR spectra were acquired on the NMR Profiler (Bruker Bio-Spin; Billerica, MA, USA) or the Vantera Clinical Analyzer (Agilent Technologies; Santa Clara, CA, USA), both equipped with 400 MHz 1H NMR spectrometers.

The sensitivity and linearity were established within the range of 300–3,500 nmol/L. For serum pools containing low, medium and high levels of LDL-P, the inter-assay, intra-assay precision and repeatability gave coefficients of variation (CVs) between 2.6 and 5.8%. The reference interval was determined to be 457–2,282 nmol/L and the assay was compatible with multiple specimen collection tubes. Of 30 substances tested, only two exhibited the potential for assay interference. Moreover, the LDL-P results from samples run on two NMR platforms, Vantera Clinical Analyzer and NMR Profiler, showed excellent correlation.

The authors concluded that the successful development of a method to measure LDL-P on a fully automated platform allows NMR technology dissemination into the routine, clinical laboratory setting and creates the opportunity for NMR-based testing across a broader range of clinical applications. They point out that, several leading national reference laboratories and large hospital system laboratories have successfully integrated the Vantera into their clinical laboratory operations. The study was published on July 28, 2014, in the journal Clinical Biochemistry.

Related Links:

LipoScience Inc.
Mayo Clinic
Bruker Bio-Spin



Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Typhoid Rapid Test
OnSite Typhoid IgG/IgM Combo Rapid Test
New
Alpha-Fetoprotein Reagent
AFP Reagent Kit

Print article

Channels

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.